
P-Cop: A Cloud Administration Proxy to Enforce Bipartite Maintenance of
PaaS Services

Bruno Braga, Nuno Santos
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal
Email: brunobraga@ist.utl.pt, nuno.santos@inesc-id.pt

Abstract—Platform-as-a-Service (PaaS) infrastructures are
highly dependent on cloud administrators. Ill-configured soft-
ware systems or compromising insider activity can result in
serious data breaches for clients of PaaS services. A general se-
curity approach against untrusted administrators is to employ
operating system hardening techniques to limit access privileges
on cloud nodes. However, this approach is overly inflexible for
PaaS services, since superuser privileges tend to be required
to apply a security patch, change a firewall rule, etc. This
paper presents P-Cop, a system aimed to provide secure PaaS
maintenance while preserving administration flexibility. To that
end, P-Cop implements a bipartite maintenance model in which
cloud administrator privileges can be elevated to superuser
on a given node, but no sensitive guest computations can be
allocated to the node until the issued command sequence has
been endorsed by an auditor, i.e., a third-party mutually trusted
by cloud provider and clients. P-Cop relies on a trusted proxy
which supervises all privileged commands issued by the cloud
administrators. Our current P-Cop design targets Docker-
containerized PaaS services and leverages TPM hardware to
enable remote attestation by external clients.

I. INTRODUCTION

The danger of cloud mismanagement is an overlooked
security risk that Platform-as-a-Service (PaaS) customers are
often faced with. To maintain the software systems of PaaS
infrastructures, cloud administrators hold privileged access
to cloud nodes, including to those where client computations
take place and customer data is located. Although in the vast
majority of cases cloud administrators use their privileges
judiciously, such privileges can be misused by introducing
security flaws that can potentially result in serious data
breaches for customers.

To overcome such risks, a common practice is to seg-
regate administration roles so as to reduce the number of
individuals that know the root passwords of critical systems.
Unfortunately, such individuals can still introduce critical
security flaws or obtain unrestricted access to customer
data. To prevent unauthorized access to customer data, some
systems preclude cloud administrators from obtaining root
privileges entirely. Systems such as CloudVisor [1], [2] or
BrokulOS [3] consist of hardened hypervisor or operating
system, respectively, which expose carefully crafted admin-
istration interfaces that allow for performing a large range
of management tasks without compromising the security

of customers’ computations. Such systems are normally
coupled with Trusted Platform Module (TPM) [4] hardware
and cloud attestation services [5], [6] to allow for remote
attestation of systems by the customers. However, enforcing
a permanent reduction of administrator privileges is hardly
tolerable in PaaS services because some critical maintenance
tasks require root privileges, e.g., apply security patches,
modify firewall rules, install software packages, etc.

This paper presents P-Cop, a system which aims to secure
PaaS services against cloud mismanagement threats without
precluding cloud administrators from acquiring superuser
privileges whenever necessary. The key idea to achieving this
property is to enforce a bipartite maintenance model between
cloud administrators and an auditor, i.e., a third-party whose
role is to validate software configurations and which is mutu-
ally trusted by both cloud provider and customers. Under this
model, cloud administrators have limited privileges in the
common case. Whenever superuser privileges are necessary,
cloud administrators can request privilege elevation so that
they can log into cloud nodes as root and execute arbitrary
commands. In such cases, to ensure that the resulting state
is trustworthy, these commands must first be endorsed by
the auditor before being definitely committed. To prevent
data breaches, no guest computations can be allocated to
the node from the moment a cloud administrator obtains
root privileges until an auditor endorses pending operations.

To implement a bipartite maintenance model, P-Cop in-
troduces a cloud administration proxy to be deployed on the
PaaS backend. This proxy mediates all superuser operations
performed by cloud administrators and supports their respec-
tive endorsement by the auditor. To acquire privilege eleva-
tion on a given cloud node, a cloud administrator requests a
super-session to the proxy. After ensuring that no customer
data is left on the node, P-Cop lets the administrator log
into the target cloud node by establishing a tunneled SSL
connection. Over that connection the cloud administrator
can execute arbitrary root commands (i.e., UID = 0) while
the proxy keeps on a local log a record of the command
history of the super-session. Auditors can later retrieve the
log from the proxy in order to analyze and endorse the super-
session commands if no security vulnerabilities have been
introduced, or revert them otherwise.

1

The main contribution of this work is the design of P-Cop.
Since the P-Cop proxy is installed on the cloud backend,
the system must shield itself against potential attacks by
untrusted administrators. P-Cop must keep track of the
software configuration of each cloud node in a way that
is capable of surviving cloud node reboots. Moreover, it
is necessary to provide evidence to PaaS clients that the
software of P-Cop proxy and cloud nodes has been endorsed
by a trusted auditor, otherwise no security assurances can
be given to PaaS clients. To address such challenges, P-Cop
incorporates new security protocols leveraging TPM chips
deployed on the cloud nodes.

Without loss of generality, we built P-Cop for Docker-
containerized PaaS services. We implemented both the P-
Cop system and a PaaS service prototype, and performed
empirical evaluation of the system based on benchmarks.
Results show that our system adds small performance
overheads to the PaaS service. Due to P-Cop, a time lag
exists since super-session operations are issued by cloud
administrators and their changes are reflected onto the PaaS
clusters. The extent of that lag depends mostly on how
tightly coupled cloud administrators and auditors operate.

II. BACKGROUND AND GOALS

Containerized Platform-as-a-Service (PaaS) provides host-
ing cloud services for customer applications within contain-
ers. Containers are supported on a given server by software
frameworks such as Docker [7], which modify the OS
so as to enforce proper isolation between containers and
manage their lifecycle. In a containerized PaaS infrastruc-
ture, the compute nodes (also named minions) is the place
where guest containers execute. The repository nodes store
container base images. Base images include pre-configured
software (e.g., apache) which form the basis for customized
container images to be instantiated on the minions. The
monitor nodes implement the logic that ties together the
entire service: they process container deployment requests,
allocate containers to minions, manage resources, etc.

In the context of this paper, we highlight four main
stakeholders: (1) the cloud provider owns the cloud infras-
tructure, (2) publishers are the service customers and are
responsible for deploying containerized applications onto
the cloud infrastructure, (3) users access publisher appli-
cations instantiated inside guest containers as regular Web
applications, (4) cloud administrators are responsible for
maintaining the software systems of the PaaS infrastructure.

The goal of our work is to enable the design of PaaS
services that can prevent access to guest containers by
untrusted cloud administrators. In spite of such restrictions,
our solution must allow for flexible administration of the
cloud by allowing cloud administrators to obtain superuser
privileges whenever necessary. Thus, we assume that cloud
administrators are untrusted. A cloud administrator can
remotely reboot or power-cycle any of the cloud nodes to

Compute Nodes

PaaS Cloud Infrastructure

Monitor Nodes

Repository NodesAuditor

Cloud
Administrator

User

Publisher
P-Cop
Auditing
HubSuper-

Session

Session

Figure 1. P-Cop architecture.

run an arbitrary operating system. He can then either mount
the local file system and access persistent hard disk state,
or install an arbitrary software stack on the node. If the
node boots to the software stack installed on the local disk,
the cloud administrator is limited to accessing the node
through the administration interface provided by that specific
software stack, e.g., an SSH console or a Web interface. The
privileges that the administrator can acquire through that
interface depend on how the software stack is configured.
For example, the operating system can be hardened so that
the administrator cannot obtain superuser privileges [3].
An untrusted administrator can install network sniffers and
similar software in order to eavesdrop the network traffic,
modify, suppress, or inject packets. However, we exclude
attacks that involve physical access to the hardware, attacks
based on software exploits, and side-channel attacks.

Every server installed in the cluster is equipped with
a Trusted Platform Module (TPM) chip. Each TPM has
a unique keypair Attestation Identity Key (AIK) whose
private key is bound to each chip and the respective public
key is certified by the cloud provider. This certification
ascertains the property of that chip (and respective server)
by the cloud provider. The certification of such keys is
performed when the hardware is deployed within the cloud
provider’s premises. We require that the TPM chip and the
cryptographic algorithms used in our solution are correct.

III. ARCHITECTURE

We present P-Cop (PaaS Cop), a PaaS cloud management
system that provides container isolation from cloud admin-
istrators while providing flexible maintenance capability. In
our solution, rather than permanently restricting administra-
tion privileges of compute nodes, we allow such privileges
to be temporarily elevated in order to let administrators log
into a particular compute node and perform operations that
require root access. Then, through a process of endorsement,
such privileged operations must be validated by an auditor in
order to ensure that no vulnerabilities have been introduced
into the node software and therefore the node can be trusted
to securely accommodate PaaS containers. Simply put, P-
Cop enforces a bipartite maintenance policy between cloud
administrators and auditors.

Figure 1 represents the architecture of the P-Cop sys-
tem when deployed in a PaaS cloud backend. The central

2

component of P-Cop is the auditing hub, which is a cloud
administration proxy provided by independent servers. The
auditing hub is responsible for keeping track of the software
state of the compute nodes and managing super-sessions.
Super-sessions consist of tunneled SSL connections over
which a cloud administrator can access a compute node with
root privileges. In regular sessions, the cloud administrator
does not have root privileges. Another component of P-
Cop is the node guard, which is a software agent that runs
on each compute node and implements local actions upon
requested by the auditing hub, namely attestation requests
and local state transitions. Finally, P-Cop provides client
software that allow stakeholders to interact with the system.

A. Restricted Operation Mode

Essentially, P-Cop ensures that PaaS guest containers can
be allocated and execute only on compute nodes running
a trusted container runtime. A trusted container runtime
is a “containarized” software stack that satisfies container
isolation properties. In particular, when such a software stack
is installed on a compute node, cloud administrators cannot
acquire superuser privileges (e.g., log into the root account).
Instead, they are restricted to using a limited management
interface that allows them to maintain the node without com-
promising the confidentiality or integrity of guest containers,
e.g., collect logs, set up resource management policies,
monitor the resource consumption, etc. This management
interface can be provided by a remote user session over
secure channel protocols like SSH, HTTPS, or similar.

To supervise which compute nodes of the PaaS infrastruc-
ture can accommodate guest containers, P-Cop maintains a
list of verified nodes. Such nodes are assured to be installed
with trusted container runtime software. This is achieved
by requiring the software to be validated and signed by
the auditor and then leveraging TPMs to attest that such
software is running on the cloud nodes. P-Cop provides the
means for publishers to instantiate their application on guest
containers hosted by verified nodes and for users to process
their data on such containers safely. P-Cop ensures that only
the compute nodes that belong to this list eligible for hosting
guest containers.

B. Privileged Operation Mode

In case a cloud administrator needs elevated privileges
on a given verified node, P-Cop allows for opening a super-
session. A super-session removes the restrictions imposed by
trusted container runtime allowing the cloud administrator
to log into the system with root privileges. However, to
prevent security breaches, before establishing the session,
P-Cop: 1) stops all running guest containers and wipes their
content so as to avoid leaving forensic traces of user data
and application code that could be accessed by the cloud
administrator, and 2) removes the node from the verified list
to avoid future instantiation of guest containers on compute

Nov 17, 2015 11:14:05 AM
ALL: Admin->Host:
service docker restart

Nov 17, 2015 11:14:06 AM
ALL: Host->Admin:
docker stop/waiting
docker start/running, process 6101

Figure 2. Example of a simple session log.

nodes that are currently controlled by the cloud administrator
and, therefore, are potentially insecure.

When the cloud administrator obtains access to a compute
node through a super-session, he can perform arbitrary
commands under root, e.g., install software, resize disk
partitions, set up firewall rules, apply kernel patches, etc.
Given that these operations can potentially leave the system
in an insecure state (e.g., if a backdoor is left), the node
cannot immediately be added back to the verified node list
once the super-session ends. Instead, P-Cop adds the node
to an unverified node list along with a log that provides a
detailed account of all operations that were performed by the
cloud administrator during the super-session. In particular,
the log contains a record of all input commands provided by
the cloud administrator and respective returned output (see
Figure 2). To insert the node back into the verified node list,
such operations must be properly endorsed.

C. Endorsement of Super-Sessions

Endorsement of super-session logs aims to ensure that the
input commands issued by the cloud administrator have not
introduced security breaches. This operation requires manual
inspection of the logs by an auditor. The auditor is a trusted
third-party that has special privileges on P-Cop for obtaining
a list of super-session logs and approving or rejecting the
operations performed within the super-session. If the super-
session is approved, then the updated configuration of the
compute node is deemed trusted. In this case, P-Cop removes
the node from the unverified list and replaces it in the
verified node list. Otherwise, if the super-session is rejected,
a policy-based decision must be taken as to what to do
next, which can be to revert the operations performed by
the administrator, reinstall the software on the node, or other
similar action. Such policy is defined by the auditor.

Essentially, the auditor is responsible for certifying the
software of the PaaS infrastructure. In addition to the val-
idation of super-session logs, the auditor must validate the
software of the trusted container images and the software
of the P-Cop system. Thus, in the interest of separation of
privileges, the auditor role cannot be played by the cloud
administrators. Instead, it must be assigned to a third party
that is mutually trusted by the cloud provider, publishers,
and users. The auditor may represent a collective entity that
involve the participation of several stakeholders, e.g., cloud
provider and customers.

3

IV. DESIGN AND IMPLEMENTATION

To design P-Cop, it was necessary to develop specific
security protocols implemented between auditing hub, node
guards, and P-Cop clients. Due to space limitations, the
detailed description of the P-Cop protocols is provided in
a companion technical report [8]. These protocols are nec-
essary to overcome several challenges in system operation:

a. System initialization: Cloud administrators must first
install a canonical software of the auditing hub. However,
since cloud administrators are untrusted, P-Cop must include
mechanisms to ensure the correct setup of the auditing hub
and enable external remote attestation by the auditor.

b. Bootstrapping and attestation of compute nodes: After
the auditing hub has been properly initialized, one of its
main roles is to check the software configuration of the
compute nodes and verify which of them have been properly
set up with a trusted container runtime. Given that such
nodes are also installed and configured by untrusted cloud
administrators, P-Cop must include mechanisms to validate
such nodes before being allowed to host guest containers.

c. Secure PaaS operations: A typical container-based PaaS
service implements some core operations to support the life-
cycle of guest applications. P-Cop must include defenses to
secure such operations. Publishers must be assured that their
applications are instantiated only on trusted compute nodes,
i.e., compute nodes properly configured with a certified
trusted container runtime. Secondly, users must be ensured
that the applications they are accessing are authentic, can be
properly identified, and execute on a trusted compute node.

d. Establishment and endorsement of super-sessions: In
order for a cloud administrator to gain unrestricted access
to compute nodes he must open a super-session. To provide
super-session support while confining the execution of ap-
plications to trusted compute nodes, P-Cop must provide
several guarantees. First, a super-session must only be
granted to a cloud administrator once it has been assured
that the targeted compute node is properly sanitized. Second,
P-Cop must ensure that applications cannot be instantiated
on a compute node of elevated administration privileges
until the resulting configuration has not been endorsed by
an auditor. Third, P-Cop must keep a complete record of
super-session operations to ensure that the auditor can trace
all configuration changes performed to the compute node. P-
Cop includes mechanisms to address all these requirements.

We implemented the P-Cop system fully and a prototype
of the PaaS software infrastructure. The P-Cop software
components were developed using Java 8 with Java ex-
tensions for SSL. SSL credentials were generated using
OpenSSL 1.0.1f and stored using Java keystores. Our trusted
container runtime setup is based on Docker 1.9 running
in a hardened Linux CentOS 7.1.1503 with kernel 3.10.0-

229.4.2.el7.x86 64. Interactions with the TPM to generate
quotes are performed using Trousers 0.3.7. SSL connections
are maintained using OpenSSH 6.6.1 servers. All generated
credentials use RSA-2048 bits keys. The PaaS software con-
sists of a simple monitor which is responsible for handling
requests from the publisher, administrator, and auditor, and
for issuing requests to the auditing hub and to the compute
nodes. PaaS repository is provided by the monitor. Minions
receive and send application packages using Linux scp.

V. EVALUATION

This section presents our evaluation of P-Cop in terms of
performance and security.

A. Performance Evaluation

To evaluate the performance of our solution, we measure
the time latencies of the operations that can most negatively
affect the overall performance of the PaaS service: 1) attest-
ing the infrastructure, which introduces delays in the system
initialization that may affect the PaaS service uptime, 2)
deploying applications, which can increase the time since the
publishers deploy their applications on the PaaS service and
the application becomes available to users, and 3) opening
super-sessions, which introduce a delay until configuration
changes are reflected into production.

Testbed. We evaluated P-Cop and our PaaS service proto-
type on a cluster that consists of: ten compute nodes, one
monitor, and one auditing hub. All nodes have two Intel
Xeon 3.00GHz, 2GB of RAM and an ethernet interface of
100Mbps. The base images run Linux CentOS 7.1.1503 with
kernel 3.10.0-229.4.2.el7.x86 64. To simulate the network
latencies experienced by the publishers, application deploy-
ment requests are issued from outside our cluster in a home
network featuring a download rate of 55.7 Mbps and an
upload rate of 5.6 Mbps. Requests by the clients of cloud
administrators and auditors are issued within our cluster
sharing a network bandwidth of 100Mbps.

Performance of attestation. Attestation is performed by
auditors to the auditing hub and by the auditing hub to
compute nodes. We use microbenchmarks to evaluate the
performance of attestation. The measured time for both these
operations is about 4 seconds. Nearly 24.6% of the overall
attestation time is taken up by the quote operation of the
TPM, while the remaining time is spent in cryptographic
operations and network round-trip time of P-Cop protocol
messages. Given that attestation operations have a relatively
low duration and occur infrequently, they contribute with a
residual impact in the initialization latency of PaaS services.

Performance of application deployment. To evaluate the
deployment time of applications, i.e., the time since the
publisher publishers an application and the application is
instantiated on the cluster, we used two PHP applications
of different sizes and complexities: Hello and OSN. Hello

4

Case File
transfers

Container
setup

P-Cop
operations Total

Hello 00:04 07:15 00:10 07:40
OSN 00:17 08:05 00:18 08:21

Table I
DISCRIMINATION OF DEPLOYMENT LATENCIES FOR FIVE INSTANCES OF

HELLO AND OSN (MINUTES:SECONDS)

is a simple PHP application that consists of a single static
web page (1.5Kb) and is representative of the baseline
deployment time for Docker-based application. OSN is an
open source online social network application (11MB) which
is representative of a complex and heavyweight application.
Both applications run on official Apache Web server (version
2.4) container. We test each application changing the number
of container instances on the cluster.

Table I shows the overall deployment times for five
instances of Hello and OSN broken up into three main
components: 1) file transfers between developer and monitor,
and between monitor and minions, 2) container setup, and 3)
P-Cop operations (SSL connections, exchanged messages,
and P-Cop specific cryptographic operations). The results
show that the main source of overhead comes from file
transfers and application deployments, i.e., SSL file copy
and Docker daemon, leaving less than 25 seconds for P-
Cop operations, which represent 5% and 2% of the total
deployment time for Hello and OSN, respectively.

Performance of super-sessions. For space constraints, we
focus on the super-session opening time, which can be
quantitatively measured. To measure this value, which deter-
mines how much time a cloud administrator needs to wait
until he can log into a minion with superuser privileges,
we deployed multiple instances of a test application on a
given minion and initiated a super-session. Before the super-
session can be established, the node is first sanitized and the
applications are migrated to another node. We repeated the
same experiment for both Hello and OSN applications.

Figure 3 shows the measured super-session opening time.
Similarly to application deployment, the time grows linearly
with the number of instances on the node. The time differ-
ence between OSN and Hello is smaller than the respective
deployment times (in the order of seconds) because no file
transfers need to be performed between the publisher and
the monitor. Table II presents the contributions of several
sources to the opening time of a super-session to a minion
running five application instances. Four components are
indicated: 1) file transfers between monitor and minions,
2) redeployment of applications on alternative minions, 3)
removal of application files and containers from current
minion, and 4) P-Cop operations. We can see that the most
significant fraction of the measured times where spent by
Docker in redeploying and deleting containers, namely 98%
and 93% for Hello and OSN, respectively. Most of the
time taken by the purging process comes from the Docker
daemon.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 3 4 5 6 7 8 9 10

S
u

p
e

r-
s
e

s
s
io

n
 s

e
tu

p
 t

im
e

(m
in

u
te

s
)

Number of guest containers

Hello
OSN

Figure 3. Administrtive latency for n instances of Hello and OSN running

B. Security Analysis

P-Cop provides confidentiality and integrity protection of
guest containers for PaaS services. P-Cop protects publisher
applications and user data from potentially malicious cloud
administrators of the cloud infrastructure. Such protection
is attained by leveraging TPM attestation, cryptographic
techniques, and operating system access control mechanisms
in the design of P-Cop.

However, P-Cop relies on a set of assumptions which, if
violated, may result in security breaches. P-Cop does not
protect against software exploits in the minions or in the
software of the auditing hub. As a result, the auditor plays
a critical role in order to rapidly identify faulty software
and require well tested or even certified software. If the
applications themselves are malicious, the users cannot also
benefit from the protections offered by P-Cop: a malicious
application with direct access to users’ data can easily tam-
per with it or exfiltrate it. It is, therefore, essential for users to
verify the identity and reputation of publishers before using
their applications. In P-Cop, the auditors are also a crucial
pillar in the system’s root of trust. Ill-intended or negligible
auditors can seriously compromise the security assurances
offered by P-Cop. To mitigate this risk, the auditor role must
be performed by a collective entity in which the participation
of independent individuals is required to avoid collusion.
P-Cop cannot offer protection against an adversary with
physical access to the hardware, and in particular that can
subvert the TPM chip. We rely on out-of-band mechanisms
to guarantee the integrity of the cloud hardware.

VI. RELATED WORK

The line of research that is mostly related with P-Cop
involves using trusted computing techniques to enhance
security and trust in the cloud. This general approach,
which was introduced by Santos et al. [9], has led to the
development of cloud attestation systems such as CloudVer-
ifier [6] and Excalibur [5] which allow for cloud customers
to remotely attest the a cloud service based on TPM chips
deployed on the cloud nodes. When coupled with hard-
ened hypervisors [1], [10], cloud attestation systems enable

5

Applications File transfers Application
deployment Minion purge P-Cop

operations Total

Hello 0.085 seconds 05:00 05:54 00:13 11:07
OSN 0.23 seconds 05:45 05:45 00:14 11:44

Table II
DISCRIMINATION OF MANAGEMENT REQUESTS’ LATENCIES FOR 5 APPLICATIONS OF HELLO AND OSN (MINUTES:SECONDS)

customers to outsource computations into the cloud while
ensuring computation isolation from cloud administrators.
However, these systems are mostly focused on IaaS clouds.

Targeting exclusively PaaS services, Brown et al. [11]
propose a trusted PaaS platform to address the lack of
transparency by application end-users users. In contrast to
P-Cop, however, their concern is about publishers that may
deploy malicious or buggy applications onto the cloud,
and not about untrusted cloud administrators. Thus, P-Cop
provides complementary security assurances to this system.

Another related topic is about ways to improve the se-
curity of cloud administration. Butt et al. [12] propose a
self-service cloud computing platform in which customers
themselves can specify low-level configurations for the cloud
infrastructure, but require a virtualized IaaS infrastructure.
Secure Cloud Maintenance [13] supports different levels of
administrator privileges on the compute nodes, but depend
on a fully trusted administrator to configure an underlying
SELinux OS; P-Cop overcomes this restriction. Hardened
operating systems such as BroKulOS [3] implement fine-
grained privilege separation for Linux administrators and can
be used for building trusted container runtimes for P-Cop.

P-Cop’s auditing capability is also related with secure
logging systems. Systems like H-One [14] are based on a
hardened hypervisor to log administrator operations using
information flow tracking when managing guest VMs. Sinha
et al. [15] do not rely on hypervisors, but rather leverage
TPM for protecting the integrity of logs. Such techniques
are orthogonal to P-Cop and can be used to improve the
security of P-Cop’s auditing hub.

VII. CONCLUSION

This paper presents P-Cop, a Platform-as-a-Service (PaaS)
cloud management system that provides container isolation
from cloud administrators while providing flexible mainte-
nance capability. P-Cop prevents untrusted cloud adminis-
trators from accessing guest containers and therefore cause
security breaches. To preserve the maintenance flexibility,
P-Cop keeps access privileges restricted on cloud nodes,
but allow cloud administrators to elevate their privileges
on cloud nodes. To preserve the security, P-Cop provides
mechanisms that allow a third-party auditor to verify that
the maintenance operations are safe. Although P-Cop was
targeted toward Docker-containerized PaaS, it can generally
be applied to other PaaS services.

Acknowledgments: This work was partially supported by the
EC through project H2020-653884 (SafeCloud), and by national

funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor:
Retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization,” in Proc. of SOSP, 2011.

[2] D. G. Murray, G. Milos, and S. Hand, “Improving Xen
security through disaggregation,” in VEE, 2008.

[3] N. Santos, R. Rodrigues, and B. Ford, “Enhancing the OS
against Security Threats in System Administration,” in Proc.
of Middleware, 2012.

[4] T. C. Group, “TPM Main Specification Level 2 Version 1.2,
Revision 130,” 2006.

[5] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu,
“Policy-sealed Data: A New Abstraction for Building Trusted
Cloud Services,” in Proc. of USENIX Security, 2012.

[6] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and
P. McDaniel, “Seeding clouds with trust anchors,” in Proc.
of WCCS, 2010.

[7] “Docker,” https://www.docker.com.

[8] B. Braga and N. Santos, “P-Cop: A Cloud Administration
Proxy to Enforce Bipartite Maintenance of PaaS Services,”
INESC-ID, Tech. Rep. 3, May 2016.

[9] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards
trusted cloud computing,” in Proc. of HotCloud, 2009.

[10] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D.
Gligor, and A. Perrig, “TrustVisor: Efficient TCB Reduction
and Attestation,” in Proc. of IEEE S&P, 2010.

[11] A. Brown and J. S. Chase, “Trusted Platform-as-a-Service: A
Foundation for Trustworthy Cloud-hosted Applications,” in
Proc. of CCSW, 2011.

[12] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy,
“Self-service Cloud Computing,” in Proc. of CCS, 2012.

[13] S. Bleikertz, A. Kurmus, Z. a. Nagy, and M. Schunter, “Secure
Cloud Maintenance,” in Proc. of ASIACCS, 2012.

[14] A. Ganjali and D. Lie, “Auditing cloud administrators using
information flow tracking,” in Proc. of CCS, 2012.

[15] P. England, L. Jia, J. Lorch, and A. Sinha, “Continuous
Tamper-proof Logging using TPM2.0,” in Proc. of TRUST,
2014.

6

