
Poster: A Systems Approach to GDPR Compliance-by-Design in
Web Development Stacks

Mafalda Ferreira
INESC-ID & Instituto Superior Técnico,

Universidade de Lisboa
mafalda.baptista@tecnico.ulisboa.pt

Tiago Brito
INESC-ID & Instituto Superior Técnico,

Universidade de Lisboa
tiago.de.oliveira.brito@tecnico.ulisboa.pt

José Fragoso Santos
INESC-ID & Instituto Superior Técnico,

Universidade de Lisboa
jose.fragoso@tecnico.ulisboa.pt

Nuno Santos
INESC-ID & Instituto Superior Técnico,

Universidade de Lisboa
nuno.m.santos@tecnico.ulisboa.pt

ABSTRACT
Pressured by existing regulations such as the EU GDPR, online
services must advertise a personal data protection policy declaring
the types and purposes of collected personal data, which must then
be strictly enforced as per the consent decisions made by the users.
However, due to the lack of system-level support, obtaining strong
guarantees of policy enforcement is hard, leaving the door open
for software bugs and vulnerabilities to cause GDPR-compliance
violations. We present ongoing work on building a GDPR-aware
personal data policy compliance system for web development frame-
works. Currently prototyped for the MERN framework, our system
allows web developers to specify a GDPR manifest from which the
data protection policy of the web application is automatically gener-
ated and is transparently enforced through static code analysis and
runtime access control mechanisms. GDPR compliance is checked
in a cross-cutting manner requiring few changes to the application
code. We evaluate our prototype with four real-world applications.
Our system can model realistic GDPR data protection requirements,
adds modest performance overheads to the web application, and
can detect GDPR violation bugs.

CCS CONCEPTS
• Security and privacy → Web application security; Software
security engineering.

KEYWORDS
GDPR compliance, privacy policies, web security

ACM Reference Format:
Mafalda Ferreira, Tiago Brito, José Fragoso Santos, and Nuno Santos. 2022.
Poster: A Systems Approach to GDPR Compliance-by-Design in Web De-
velopment Stacks. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’22), November 7–11, 2022, Los
Angeles, CA, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3548606.3563521

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3563521

1 INTRODUCTION
Protecting personal data has become a crucial concern for most
organizations with an online presence. In particular, the EU General
Data Protection Regulation (GDPR) imposes strict access control re-
quirements on data controllers when managing the personal data of
their customers. To this end, data controllers must publish a human-
readable policy declaring the personal data to be collected and the
purposes for which it will be processed. Once explicit consent is
granted by the data subjects, data controllers must strictly comply
with the agreed policy, otherwise, they may incur the payment of
heavy fines.

However, it is not easy to enforce personal data protection poli-
cies in a full-blown web application. Web developers often write
their applications using full-stack development frameworks that are
currently agnostic to the GDPR, such as MERN1. However, MERN
and other popular web frameworks provide no native support to
help web developers specify and enforce personal data protection
policies, opening the door to GDPR compliance violations.

To help web developers fulfill the GDPR requirements for per-
sonal data protection, various system-level mechanisms have been
recently proposed [3, 5, 7–10, 12–14]. On the one hand, consent
management platforms [9] focus on the application frontend, en-
abling cookie banners to be transparently managed in a GDPR-
compliant manner, but lack the mechanisms to enforce data pro-
tection policies at the application backend. In contrast, other sys-
tems [10] act at the storage layer alone, rendering them unable
to detect data access violations that depend on the application
context, e.g., the notion of purpose or user authentication state.
Riverbed [12] and PrivGuard [13] adopt a truly holistic approach,
where they keep track of personal data ownership and user consent
preferences throughout the entire data workflow. However, these
systems focus on specialized usage scenarios, relying on mecha-
nisms (e.g., trusted hardware) which are difficult or unsuitable to
apply in typical 3-tier web applications built with full-stack frame-
works, which are the focus of our work.

2 GOALS
Our goal is to design a GDPR-aware policy enforcement system
for web frameworks that can help web developers mitigate GDPR
violations caused by application bugs and security vulnerabilities

1MERN stands for MongoDB, Express.js, React.js and Node.js.

https://doi.org/10.1145/3548606.3563521
https://doi.org/10.1145/3548606.3563521
https://doi.org/10.1145/3548606.3563521


CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Mafalda Ferreira, Tiago Brito, José Fragoso Santos, and Nuno Santos

that result in data breaches, such as SQL injections. Given the
extensiveness of the GDPR, we concentrate specifically on ensuring
compliance with the three GDPR guidelines: purpose limitation, data
minimization and lawfulness of processing. We believe our solution
can be extended to cover other GDPR requirements, which we leave
for future work. Concerning the security vulnerabilities, our focus
is to reduce the attack surface of vulnerable code, restricting its
privileges to protection domains based on data access purposes.
We look for a solution that: i) allows the specification of expressive
data protection policies, being able to accommodate the needs of
various organizations and application scenarios, ii) is transparent,
ensuring that policies are shown to the users in a clear, complete,
and accurate way, reflecting how the application actually handles
the data, and iii) is easy to maintain, detaching policy enforcement
from application code.

3 PROPOSED SOLUTION
We propose a GDPR-aware personal data compliance system for
full-stack web frameworks. UsingMERN for demonstration, it incor-
porates cross-cutting GDPR compliance features whilst requiring
minimal changes to the application code. With our system, the data
protection policy of the website is automatically generated based on
a machine-readable GDPR manifest written by the web developer.
This manifest specifies the personal data types and purposes for
which the web application can process the data. The system will
then strongly enforce the policy consent decision of website users,
preventing business-level operations from manipulating personal
data for purposes that data subjects (i.e., the users) have not agreed
to. Put simply, by approving the data protection policy of a website
powered by our solution, “what you agree to is what you get”.

Our system design includes three main novelties that solve non-
trivial challenges to automatically detect and prevent GDPR compli-
ance violations. First, to overcome a semantic gap between abstract
GDPR concepts such as “personal data” or “purpose” and the ap-
plication’s JavaScript code and MongoDB queries, it introduces a
domain-specific language (DSL) for specifying the GDPR manifest.
Our DSL features a small set of intuitive language constructs that
allow developers to easily bridge this semantic gap without over-
whelming them with unnecessary complexity or legal terminology.

Second, to prevent GDPR violations, the JavaScript code imple-
menting the business logic and the database queries must not be
allowed to process personal data unless this data is strictly used
for the purposes indicated in the GDPR manifest. To perform these
checks as the application codebase and data protection policy itself
evolve, our system includes a static analysis tool that automatically
checks for the presence of GDPR compliance bugs. This tool gener-
ates a graph-based model of the JavaScript code and uses it along
with the GDPR manifest to look for violations of GDPR’s purpose
limitation and data minimization guidelines.

Third, the system needs to efficiently keep track of consent pref-
erences for every user visiting the website and block any business-
level operations that may attempt to access personal data against
their will. Given that these access control decisions must be made
dynamically, it includes dedicated middleware which implements
the novel idea of sticky banners, i.e., an evolution of cookie banners

Offline Phase
Runtime Phase

Application
Code

DPG
Generator

Client (Browser)

HTTP Response

Application

HTTP Request

Policy
Enforcement

Application 
Developer

User

GDPR
Manifest

Data Processing
Graph

NOT OK
Policy Compliance

Verifier

Policy Debugging

GDPR
Manifest

Users &
Consent

OK

Database

Server

Manager Service

Context
Handler

Consent
Management

Access
ControlAuthentication

Middleware

Augmented
Policy Descriptor

API

Figure 1: System architecture.

where users’ consent is recorded and their respective policy deci-
sions are dynamically enforced at runtime. We show that dynamic
policy enforcement adds another defensive barrier against exter-
nal attempts to exfiltrate personal data through the exploitation of
vulnerabilities in the application code.

Figure 1 illustrates a deployment of our system in a 3-tier web
application. The yellow boxes represent the application-specific
components that are present in a typical behavior of a 3-tier ar-
chitecture system. The blue boxes represent the specific software
components of our system. It operates in two phases: the offline
phase and the runtime phase.

The offline phase takes place at development time before deploy-
ing the web application. In this phase, the web developer specifies
a GDPR manifest from which the data protection policy will be
generated. Our system implements a static code analysis pipeline
that allows the web developer to verify if the policy reflects the way
that the application behaves. First, a code analysis tool generates a
model of the application code which we designate Data Processing
Graph (DPG). This model is then fed to a compliance verification
tool that looks for inconsistencies between the DPG and the GDPR
manifest. If so, the developer needs to debug either the application
code or the GDPR manifest to ensure that there is a match between
them.When the validation step passes, the GDPRmanifest is loaded
to the runtime components.

In the runtime phase, our system implements dynamic policy
enforcement and consent management functions. Two components
take charge of this phase: middleware and manager service. The
middleware consists of application-linked libraries and plays two
roles: i) keeps the manager server updated with user-related in-
formation, and ii) enforces dynamic access control decisions and
consent management validations. The manager service runs in a
centralized server and coordinates the middleware. Importantly,
it generates a data structure named Augmented Policy Descriptor
(APD) which contains the information required by the middleware
to dynamically enforce the policy, such as the GDPR manifest and
user consent preferences. The middleware leverages this informa-
tion on two main occasions. In one case, it intercepts the HTTP



Poster: A Systems Approach to GDPR Compliance-by-Design in Web Development Stacks CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Figure 2: Average client-perceived latency in legacy applica-
tion tasks. Labels show the relative overhead, in percentage.

requests to verify the user’s credentials and consent preferences,
and enforce access control accordingly. The middleware also in-
tercepts the database queries of the application to validate if they
satisfy the GDPR policy and block them otherwise.

To specify the GDPR manifest in an expressive and unambigu-
ous way, a central challenge is to bridge the semantic gap between
application and GDPR domains. Our approach is to create a sim-
ple DSL where the developer first specifies abstractions for two
independent conceptual planes (application and GDPR) and then
establishes mappings between them. On the application plane, the
developer specifies the GDPR-agnostic attributes of the web appli-
cation, such as the data types of the database schema and REST
API operations. The GDPR plane describes attributes related to the
GDPR requirements, including the personal data, the purposes, and
which data is allowed to be collected for a given purpose. Although
there are related DSLs for modeling and verifying systems’ security
properties [11], the provided abstractions do not easily map to our
problem domain. This is a limitation that we overcome in our work.

4 PRELIMINARY RESULTS
We implemented an open-source prototype of our system forMERN.
To assess the expressiveness power of its policy language and its
fitness for real-world scenarios, we conducted four case studies.
The first one was based on a real clinical analysis scenario, building
the entire application from scratch, where we learned that it can
be used to fully express data protection requirements in the health
domain. We collaborated with the clinical laboratory LEB - Labo-
ratórios Elisabete Barreto [1] to develop a prototype intranet service
for supporting its internal business processes. The others are based
on large preexisting and popular applications, and allowed us to
learn that our system can detect compliance bugs in complex and
evolving applications. We selected three open-source web applica-
tions: Habitica [6], a task management application with over 1M
downloads in Google Play and 9k GitHub stars, Amazona [2], an
e-commerce application, amazon style, with 1.3k GitHub stars, and
Blog [4], a blog application with 3.3k GitHub stars.

We experimentally evaluated the performance of our prototype,
and observed a 13.2% increase in average latency in legacy appli-
cations, from the perspective of Web clients. Figure 2 presents the
average client-perceived latency of the legacy applications with
(blue bars) and without our system (grey bars). In general, these
overheads are dominated by the execution time of the policy en-
forcement module, which takes charge when intercepting the data-
base queries. We consider the overheads incurred by the benchmark
applications are acceptable given the added security and policy com-
pliance benefits of our system.

5 CONCLUSIONS AND FUTUREWORK
This work presents a GDPR-aware policy compliance system de-
signed for full-stack web development frameworks. It includes
a policy specification language for specifying the GDPR require-
ments of the application and employs static and dynamic analysis
to enforce policy compliance. We prototyped our system using
MongoDB, Express.js, and Node.js and evaluated it with four case
studies. Our system is able to prevent various GDPR compliance
violations while registering acceptable performance overheads. As
for future work, we intend to improve on some existing limitations,
namely: i) extend the verified GDPR guidelines, ii) improve the
accuracy of static analysis and characterize its soundness and com-
pleteness guarantees, iii) optimize the performance of our runtime
enforcement engine, e.g., through query rewriting, iv) perform a
usability study of our system, and v) strengthen our threat model by
developing new defenses against explicit attacks to the system itself.
For instance, an attacker may try to subvert the system’s policy
enforcement mechanisms by taking advantage of a software bug in
the middleware. To mitigate these attacks, we propose to study the
use of software verification techniques to preemptively detect bugs
in the middleware that can lead to critical security breaches.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments and insight-
ful feedback. This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) via the 2021.06134.BD
grant, and the UIDB/50021/2020, PTDC/CCI-COM/32378/2017 (IN-
FOCOS), and CMU/TIC/0053/2021 (DIVINA) projects.

REFERENCES
[1] Análises Clínicas LEB - Laboratórios Elisabeth Barreto. 2022. Retrieved January

14, 2022 from https://www.leb-analises.com/.
[2] Basir. 2020. Amazona - Build ECommerce Website Like Amazon. Retrieved

April 13, 2022 from https://github.com/basir/node-react-ecommerce.
[3] Abhishek Bichhawat, Matt Fredrikson, Jean Yang, and Akash Trehan. 2020. Con-

textual and Granular Policy Enforcement in Database-Backed Applications. In
AsiaCCS’20.

[4] gothinkster. 2018. Blog - RealWorld Example App. Retrieved April 13, 2022 from
https://github.com/gothinkster/node-express-realworld-example-app.

[5] Marco Guarnieri, Musard Balliu, Daniel Schoepe, David Basin, and Andrei
Sabelfeld. 2019. Information-Flow Control for Database-Backed Applications. In
EuroS&P’19.

[6] HabitRPG. 2021. habitica - Release v4.189.0. Retrieved January 14, 2022 from
https://github.com/HabitRPG/habitica/releases/tag/v4.189.0.

[7] Rishabh Khandelwal, Thomas Linden, Hamza Harkous, and Kassem Fawaz. 2021.
PriSEC: A Privacy Settings Enforcement Controller. In USENIX Security’21.

[8] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Po-
likarpova, Deian Stefan, and Ranjit Jhala. 2021. STORM: Refinement Types for
Secure Web Applications. In OSDI’21.

[9] Célestin Matte, Nataliia Bielova, and Cristiana Santos. 2020. Do Cookie Banners
Respect my Choice? Measuring Legal Compliance of Banners from IAB Europe’s
Transparency and Consent Framework. In S&P’20.

[10] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Druschel.
2017. Qapla: Policy compliance for database-backed systems. In USENIX Secu-
rity’17.

[11] Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2019. OAUTHLINT: An Empirical
Study on OAuth Bugs in Android Applications. In ASE’19.

[12] Frank Wang, Ronny Ko, and James Mickens. 2019. Riverbed: Enforcing User-
defined Privacy Constraints in Distributed Web Services. In NSDI’19.

[13] Lun Wang, Usmann Khan, Joseph Near, Qi Pang, Jithendaraa Subramanian, Neel
Somani, Peng Gao, Andrew Low, and Dawn Song. 2022. PrivGuard: Privacy
Regulation Compliance Made Easier. In USENIX Security’22.

[14] Sebastian Zimmeck, Rafael Goldstein, and David Baraka. 2021. PrivacyFlash Pro:
automating privacy policy generation for mobile apps. In NDSS’21.

https://www.leb-analises.com/
https://github.com/basir/node-react-ecommerce
https://github.com/gothinkster/node-express-realworld-example-app
https://github.com/HabitRPG/habitica/releases/tag/v4.189.0

	Abstract
	1 Introduction
	2 Goals
	3 Proposed Solution
	4 Preliminary Results
	5 Conclusions and Future Work
	Acknowledgments
	References

