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Abstract—Pressured by existing regulations such as the EU
GDPR, online services must advertise a personal data pro-
tection policy declaring the types and purposes of collected
personal data, which must then be strictly enforced as per the
consent decisions made by the users. However, due to the lack
of system-level support, obtaining strong guarantees of policy
enforcement is hard, leaving the door open for software bugs
and vulnerabilities to cause GDPR-compliance violations.

We present RuleKeeper, a GDPR-aware personal data
policy compliance system for web development frameworks.
Currently ported for the MERN framework, RuleKeeper al-
lows web developers to specify a GDPR manifest from which
the data protection policy of the web application is automat-
ically generated and is transparently enforced through static
code analysis and runtime access control mechanisms. GDPR
compliance is checked in a cross-cutting manner requiring
few changes to the application code. We used our prototype
implementation to evaluate RuleKeeper with four real-world
applications. Our system can model realistic GDPR data pro-
tection requirements, adds modest performance overheads to
the web application, and can detect GDPR violation bugs.

1. Introduction

Protecting personal data has become a major concern
for most online organizations. In particular, the EU Gen-
eral Data Protection Regulation (GDPR) [1] imposes strict
access control requirements on data controllers when man-
aging the personal data of their customers. To this end, data
controllers must publish a human-readable policy declaring
the personal data to be collected and the purposes for which
it will be processed. Once consent is granted by data sub-
jects, data controllers must comply with the agreed policy,
otherwise, they may incur the payment of heavy fines [2–5].

However, it is not easy to enforce personal data pro-
tection policies in a full-blown web application. Developers
often write their applications using full-stack development
frameworks that are currently agnostic to the GDPR. For
instance, with MERN [6], they write the application code in
JavaScript using React.js [7] to implement the frontend, Ex-
press.js [8] and Node.js [9] the backend, and MongoDB [10]
the database tier. Yet, MERN and other popular web frame-
works provide no native support to help developers specify
and enforce personal data protection policies, opening the
door to GDPR compliance violations and privacy breaches.

To help developers fulfill the GDPR requirements for
personal data protection, various system-level mechanisms
have been proposed [11–19]. On the one hand, consent
management platforms (CMP) [18, 20] focus on the ap-
plication frontend, enabling cookie banners to be managed
in a GDPR-compliant manner. Unfortunately, recent studies
identified various legal violations in popular CMPs [18, 21–
23]. CMPs are also intrinsically limited as they lack mech-
anisms to enforce data protection policies at the application
backend. On the other hand, systems like Qapla [12] only
act at the storage layer, rendering them unable to detect data
access violations that depend on the application context,
e.g., the notion of purpose or user authentication state.
Riverbed [13] and PrivGuard [14] adopt a holistic approach,
where they keep track of personal data ownership and user
consent preferences throughout the entire data workflow.
However, they focus on specialized usage scenarios, relying
on mechanisms (e.g., trusted hardware) which are difficult
or unsuitable to apply in typical 3-tier web applications built
with full-stack frameworks, which are the focus of our work.

We present RuleKeeper, a GDPR-aware policy compli-
ance system for web frameworks. Using MERN for demon-
stration, RuleKeeper incorporates cross-cutting GDPR com-
pliance features whilst requiring minimal changes to the ap-
plication code. With RuleKeeper, the data protection policy
of the website is automatically generated from a machine-
readable GDPR manifest written by the developer. This man-
ifest specifies the personal data and purposes for which the
web application can process the data. RuleKeeper will then
enforce the consent decision of website users, preventing
business-level operations from manipulating personal data
for purposes that data subjects have not agreed to. Put
simply, by approving the data policy of a website powered
by RuleKeeper, “what you agree to is what you get”.

To automatically detect and prevent GDPR compliance
violations, RuleKeeper includes three main design novelties.
First, to overcome the semantic gap between abstract GDPR
concepts such as “personal data” or “purpose” and applica-
tion’s JavaScript code and MongoDB queries, RuleKeeper
introduces a domain-specific language (DSL) for specifying
the GDPR manifest. Our DSL features a small set of in-
tuitive language constructs that allow developers to easily
bridge this semantic gap without overwhelming them with
unnecessary complexity or GDPR’s legal terminology.

Second, to prevent GDPR violations, the JavaScript code
implementing the business logic and the database queries
must not be allowed to process personal data unless this
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1. Maria visits the Webus
website.

Device and location cookies
are collected by the website.

2. Maria checks the available
schedules for her trip to Berlin.

3. Maria creates an
account and logs in.

No new data is obtained
from Maria.

The login information is collected
by the website: e-mail address,

username and password.

4. Maria buys a ticket
for her trip.

5. Maria checks her
purchase history.

6. Maria subscribes to the
newsletter.

The purchase information is
collected by the website: date,

destination, name and credit card.

Maria's e-mail is collected
by the website.

No new data is obtained
from Maria.

Figure 1: Example of user interaction with Webus: the caption below the screens tells the data collected at each step.

data is strictly used for the purposes indicated in the GDPR
manifest. To perform these checks as the application code-
base and data protection policy itself evolve, RuleKeeper
includes a static analysis tool that automatically checks for
the presence of GDPR compliance bugs. This tool generates
a graph-based model of the JavaScript code and uses it along
with the GDPR manifest to look for violations of GDPR’s
purpose limitation and data minimization guidelines.

Third, the system needs to efficiently keep track of
the consent preferences for every user visiting the website
and block any business-level operations that may attempt
to access personal data against their will. Given that such
access control decisions must be made at runtime, Rule-
Keeper includes a dynamic policy enforcement middleware
that implements “sticky banners”, i.e., an evolution of cookie
banners where users’ consent is recorded and their respective
policy decisions are dynamically and transparently enforced
at runtime. Our dynamic policy enforcement also adds an-
other defensive barrier against external attempts to exfiltrate
personal data by exploiting vulnerabilities in the application
code. Moreover, it allows identifying any false negatives
that may have potentially been missed by the static analysis,
ensuring that our system’s policy enforcement is sound, i.e.,
RuleKeeper can find all the compliance violations in scope.

We implemented an open-source prototype of Rule-
Keeper for MERN. To assess the expressiveness power of
its policy language and its fitness for real-world scenar-
ios, we conducted four case studies. One based on a real
clinical analysis scenario, building the entire application
from scratch, where we learned that RuleKeeper can be
used to fully express data protection requirements in the
healthcare domain. The others are based on large preexisting
and popular applications, and allowed us to learn that Rule-
Keeper can detect compliance bugs in complex and evolving
applications. We experimentally evaluated the performance
of RuleKeeper, and found that the overheads incurred by
the benchmark applications are acceptable given the added
security and policy compliance benefits of our system.

In summary, this paper makes three main contributions:
1) The design of a GDPR-aware personal data compliance

system for full-stack web frameworks, relying on a DSL
for specifying GDPR requirements and a combination of
static and dynamic analysis to enforce policy compliance.

2) A prototype implementation of the system for the MERN
framework; we make our source code publicly available.

3) An evaluation of RuleKeeper using complex real-world
applications demonstrating the expressiveness of our
DSL, the effectiveness of our techniques at thwarting
GDPR violations, and the performance of our system.

2. Motivation and Design Goals

2.1. Motivating Example

To motivate the need for our system, consider Webus,
a hypothetical toy web application. It implements an online
bus booking service that lets users browse bus schedules,
buy tickets, see their purchase history, and subscribe to a
newsletter. Figure 1 illustrates the steps performed by Maria
as she interacts with Webus. To book a bus ticket to Berlin,
as she lands on the website’s front page (1), Maria must
consent to the collection of cookies as per a data protection
policy popping up in the screen. She then looks up for avail-
able trips (2), finds a suitable trip, and creates a user account
by providing: email address, username, and password (3).
After logging in, Maria buys her ticket, which demands
her name and credit card information (4). To check if the
purchase was successful, she visits her purchase history (5).
Lastly, she subscribes to the Webus newsletter (6).

To abide by the GDPR, the Webus provider, acting as
both data controller and data processor, must i) specify
the purposes and means of personal data processing, and ii)
implement technical measures to safeguard the protection of
personal data (Articles 4, 24 and 28 of the GDPR [1]). To
satisfy i), types and purposes of collected personal data must
be explicitly declared in the policy. In this case, Webus col-
lects multiple personal data items: e-mail address, username,
name, credit card number, and ticket purchase history. These
items are differently used for two main purposes: ticket-
managing purposes, served by the operations “create an
account”, “buy a ticket”, or “read the purchase history”, and
marketing purposes, which are put into action by operation
“subscribe to newsletter”. As for ii), enforcement measures
must also respect the following GDPR guidelines:
• Purpose Limitation: Article 5.1 b) states that personal

data must be collected for specified, explicit and legiti-
mate purposes and must not be processed in a manner
that is incompatible with those purposes. For instance,
a credit card number collected for ticket managing pur-
poses cannot be used for targeted marketing.

• Data Minimization. As per article 5.1 c), personal data
should not be processed if not needed for the initially
intended purpose. E.g., as the user’s home address is not
necessary for buying a ticket, it should not be collected.

• Lawfulness of Processing. Articles 5.1 a) and 6 declare
that each purpose must have a valid lawful reason to
process the personal data, such as the users’ consent.
Data subjects, such as Maria, are required to give their
positive, specific, and unequivocal consent to each one



of the purposes for which they allow their data to be
collected. For instance, if a data subject only gives their
consent to ticket managing purposes, then Webus is not
allowed to send him newsletters for marketing purposes.

System model: To build a web application like Webus
while meeting the above GDPR requirements, we focus on
classical 3-tier web architectures implemented with the help
of popular full-stack frameworks such as MERN. In MERN,
the presentation layer consists of web pages and JavaScript
code running on the browser, and it is implemented with
React.js. The logic layer consists of server-side code running
on Node.js. With the assistance of Express.js, this code
exposes an API for serving HTTP(S) requests to Webus
operations by the presentation layer. The API is composed
of a route per operation (i.e., a specific URL) and each op-
eration is implemented by a piece of JavaScript code named
controller. For instance, the “buy ticket” operation exposes
route /buy ticket and it is served by the controller listed
in Figure 3. This layer also implements user authentication
and access control functions, and processes the data from
the data tier using object-relational mapping (ORM). Lastly,
MERN’s data layer uses MongoDB, a non-relational DBMS,
for storing persistent data in databases. Each database is
laid out via a schema. In Webus, the data is organized
in four tables, containing the information suggested by
their respective names: “Schedules”, “Users”, “Tickets”, and
“Newsletters”. “Schedules” stores bus schedule information
and is the only table that does not contain personal data.

2.2. Threats to GDPR Compliance

Using the Webus application, we identify several threats
to GDPR compliance which we group into three categories:
compliance bugs (example 1 and 2), security vulnerabilities
(example 3) and consent violations (example 4).
Example 1: Data processed for incompatible purposes.
Suppose Webus developers want to implement a new mar-
keting feature to send promotional codes to frequent travel-
ers (⩾ 10 trips in 2021) if they subscribe to the newsletter.
So, besides the e-mail, the subscription logic will also need
to process the ticket history as well. Figure 2 illustrates
the new changes to the source code. Originally, since the
“subscribe to newsletter” operation is bound to marketing
purposes, it should only be allowed to process the e-mail of
the subscriber. However, this new version will now access
personal data that was not meant to be used for marketing
purposes, i.e., the user’s trip history. Given that there is
no mechanism in place to validate GDPR compliance, this
code upgrade will introduce a compliance bug leading to
the violation of the purpose limitation principle.
Example 2: Reflective compliance bug. The Webus service
had a problematic bus overbooking policy. So, the develop-
ment team made a small code fix to revert it. Figure 3 shows
the new code version: when a person buys a ticket for a trip,
that information is added to the “Schedules” table; users can
no longer buy tickets once the maximum capacity is reached.
To avoid the mistake of example 1, developers verified that

function subscribe(req, res) {
const { e_mail } = req.body;

connection.query(`INSERT INTO newsletters (e_mail) VALUES
('${e_mail}')`, (err) => {↪→

/* New changes associated with the promo code */
connection.query("SELECT * FROM tickets WHERE e_mail = '${e_mail}'

AND year(date)>=2021", (err, tickets) => {↪→
if (tickets.length >= 10) sendPromoCode(e_mail);
res.sendStatus(200); });

});
}

Figure 2: Code snippet of examples 1 and 3. Compliance bug
causing unlawful processing of personal data for marketing.

function seeSchedules(req, res) { /* Return all schedules from all
time */↪→

connection.query("SELECT * FROM schedules", (err, schedules) => {
res.status(200).json(schedules); });

}

function buyTicket(req, res) {
const { name, credit_card, email, destination, date } = req.body;

/* Add new ticket */
connection.query(`INSERT INTO tickets (name, destination, date,

creditcard, e_mail) VALUES ('${name}', '${destination}',
'${date}', '${credit_card}', '${email}')`,(err) => {

↪→
↪→

/* Add new traveler to trip - new changes */
connection.query(`UPDATE schedules SET travelers =

CONCAT(travelers, '${', ' + name}') `, (err) => {↪→
res.sendStatus(200); });

});
}

Figure 3: Code snippet of example 2. This application bug leads
to the unlawful processing of personal data.

the new “buy ticket” version follows the purpose limitation
and data minimization guidelines. Unfortunately, they have
overlooked an important fact. The “see schedules” operation
was originally not consigned to a specific GDPR purpose as
it does not process personal data. However, the same query
that the seeSchedules function was previously invoking will
now (unlawfully) return personal data about travelers’ trips.
Indirectly, a GDPR compliance bug was introduced that
violates the two aforementioned principles.
Example 3: Purpose escalation attacks. A remote attacker
may attempt to extract personal data from Webus by exploit-
ing an SQL injection vulnerability inside vulnerable code
that should not even have access to that specific kind of
data. For instance, the “subscribe to newsletter” operation
listed in Figure 2 is only expected to have access to the
subscribers’ emails. However, this code is vulnerable to an
SQL injection. By typing in the e-mail field: "" UNION ALL
SELECT name, credit card FROM tickets, a remote attacker
can leak the contents of columns “name” and “credit card”
from the “Tickets” table, which contain highly sensitive user
identification and credit card information. We call this kind
of attack a purpose escalation attack, where the attacker is
able to access personal data inaccessible for the purpose(s)
that the vulnerable function is associated with.
Example 4: Defective consent management. The Webus
team used a third-party library to manage users’ consent.



The library automatically pops up a cookie banner with a
customized message indicating the requested personal data
types and purposes (i.e., ticket booking and marketing). The
library reads the user’s response and saves a cookie on the
browser’s cache. Unfortunately, this type of libraries [24, 25]
only relies on a cookie to remember the user’s decision in
future visits and does not enforce this decision on the server-
side. So, even if a user consents to ticket booking purposes
only, data can still be processed for marketing purposes.

2.3. Goals and Threat Model

Our goal is then to design a GDPR-aware policy enforce-
ment system for web frameworks to help web developers
thwart the aforementioned threats. We seek a solution that:
i) allows specifying expressive data protection policies, thus
serving the needs of various organizations and application
scenarios, ii) is transparent, ensuring that policies are shown
to the users in a clear, complete, and accurate way, reflecting
how the application actually handles the data, and iii) is easy
to maintain, detaching policy enforcement from application
code. In this work, we target MERN, but we explain in
Section 4 how our techniques can be applied to other web
frameworks. Given the GDPR’s extensiveness, we concen-
trate on ensuring compliance with the three GDPR guide-
lines indicated in Section 2.1. Section 8 further discusses
how to extend our solution to cover other GDPR rules.
Threat model: We design our system as an aid for well-
intentioned developers. It aims to help organizations and
developers alike mitigate potential GDPR violations due
to the accidental introduction of bugs in web applications
(see Section 2.2). In this sense, RuleKeeper is not meant to
defend against a malicious hosting organization or malicious
developers willing to intentionally introduce GDPR compli-
ance violations in the code. Developers will be using trusted
APIs provided by the native web framework (MERN) and
our system; we expect any potential bugs to arise exclusively
from accidental programming errors. Additionally, we aim
to protect against external adversaries that may attempt
to exploit vulnerabilities in the application code causing
data breaches through SQL injections, more specifically, via
purpose escalation attacks as described in Section 2.2.
Assumptions: We assume that the developer(s) is(are) re-
sponsible for specifying a data protection policy for the
target web application. This policy is expected to reflect
the specific terms of the GDPR regulations that apply to
the particular organization running the web application. To
this end, the web developer(s) may require the assistance
of the company’s Data Protection Officer (DPO). As for
the execution environment, our trusted computing base in-
cludes the browser runtime, the MERN software stack, and
the components of our system. The distributed components
communicate with each other using secure channels.

3. System Design

Figure 4 depicts a RuleKeeper deployment for a 3-tier
web application. The yellow boxes represent the application-
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Figure 4: Architecture of a web application using RuleKeeper.

specific components that are present in a typical behavior
of a 3-tier architecture system. The blue boxes represent
RuleKeeper’s specific software components. The system
operates in two phases: offline phase and runtime phase.

The offline phase takes place at development time before
deploying the web application to production. In this phase,
the web developer specifies a GDPR manifest from which
the data protection policy will be generated. RuleKeeper
implements a static code analysis pipeline that allows the
web developer to verify if the policy reflects the way that
the application behaves. This verification is performed in
two steps. First, a code analysis tool generates a model of the
application code which we designate Data Processing Graph
(DPG). Then, a compliance verification tool will look for
inconsistencies between the DPG and the GDPR manifest.
If this is the case, the developer needs to debug either the
application code or the GDPR manifest itself to resolve these
inconsistencies. When the validation step passes, the GDPR
manifest is loaded to RuleKeeper’s runtime components.

In the runtime phase, RuleKeeper implements dynamic
policy enforcement and consent management functions us-
ing two components: middleware and manager service. The
middleware consists of application-linked libraries and plays
two roles: i) keeps the manager server updated with user-
related information, and ii) enforces dynamic access control
and consent management validations. The manager service
runs in a centralized server and coordinates the middleware.
Importantly, it generates a data structure named Augmented
Policy Descriptor (APD) which contains the information re-
quired by the middleware to dynamically enforce the policy,
such as the GDPR manifest and user consent preferences.
The middleware leverages this information in two main
occasions. In one case, it intercepts the HTTP requests to
verify the user’s credentials and consent preferences, and
enforce access control accordingly. The middleware also
intercepts the database queries of the application to validate
if they satisfy the GDPR policy and block them otherwise.



RuleKeeper supports dynamic policies in the sense that,
whenever a meaningful contextual change occurs at runtime,
e.g., a user changes their consent decision, the manager will
accordingly update and propagate a new APD. Moreover,
when a policy changes (e.g., due to a business-level de-
cision), these changes can be reflected in a new manifest,
checked through static analysis, and propagated by the man-
ager via a new APD to the connected middleware instances.
If the application is updated, e.g., with a feature that collects
new personal data, the manifest needs to be updated, and the
static analysis needs to be rerun to report mismatches.

3.1. Specifying Policies

To specify a GDPR manifest expressively and in a non-
ambiguous way, a central challenge is to bridge the semantic
gap between application and GDPR domains. Our approach
is to create a simple DSL where the developer first specifies
abstractions for two independent conceptual planes (appli-
cation and GDPR) and then establishes mappings between
planes. Next, we explain this idea using Figure 5 as a toy
GDPR manifest that a developer would write for Webus.
Application plane: The developer starts by specifying sev-
eral GDPR-agnostic attributes of the web application. The
DATA-ITEMS field defines labels for all data types that can be
collected and processed by the web application. In our exam-
ple, Webus processes seven data types: tickets’ buyer name
and credit card, tickets’ date and destination, schedules’ date
and destination, and newsletter e-mail. This data, whether
personal or not, is processed by the application through
specific operations that must be labeled and listed in the field
OPERATIONS. Webus has four: “see schedules”, “buy ticket”,
“see purchase history”, and “subscribe to newsletter”.
GDPR plane: The next step is to specify attributes related
with the GDPR requirements in scope. Firstly, personal data
must be tagged using the PERSONAL-DATA field. Of all the
data types on Webus, only the schedule information is not
considered personal. The purposes for which the data can be
processed are defined in the PURPOSES field. Webus collects
data for two distinct purposes: ticket management and mar-
keting. The data that can be collected and further processed
for each purpose is described using the DATA-COLLECTION
field. Due to the data minimization principle, each purpose
cannot process data that was not initially collected for
it. Additionally, according to the lawfulness of processing
principle, each purpose must be associated with a lawfulness
base expressed by the LAWFULNESS-BASE field. In Webus, both
lawfulness bases are the users’ consent. Each operation is
then associated with a purpose using the EXECUTED-FOR field.
Webus “subscribe to newsletter” operation is executed for
marketing purposes. So, for instance, if this operation tries to
access the user’s name, it will be marked as not compliant.
Mapping planes: To narrow the semantic gap between
GDPR policies and application code, the DATA-MAPPING field
maps the data items to the corresponding database schema,
particularly the table and column where it is stored. Oper-
ations are mapped to the corresponding web endpoints ex-
posed by the web application, using the OPERATION-MAPPING

# Application plane
DATA-ITEMS: ticket buyer name, ticket destination, ticket date,

ticket buyer credit card, trip destination, trip date, email.↪→

OPERATIONS: see schedules, buy ticket, see purchase history,
subscribe to newsletter.↪→

# GDPR plane
PERSONAL-DATA: ticket buyer name, ticket destination, ticket date,

ticket buyer credit card, email.↪→

PURPOSES: ticket management, marketing.

DATA-COLLECTION:
ticket buyer name, ticket destination, ticket date, ticket buyer

credit card ARE COLLECTED FOR ticket management purposes.↪→
email IS COLLECTED FOR marketing purposes.

LAWFULNESS-BASE:
PURPOSE ticket management HAS LAWFULNESS BASE consent.
PURPOSE marketing HAS LAWFULNESS BASE consent.

EXECUTED-FOR:
buy ticket, see purchase history ARE EXECUTED FOR ticket

management purposes.↪→
subscribe to newsletter IS EXECUTED FOR marketing.

# Mapping planes
DATA-MAPPING:
ticket buyer name IS IN COLUMN name OF TABLE tickets.
ticket destination IS IN COLUMN destination OF TABLE tickets.
ticket date IS IN COLUMN date OF TABLE tickets.
ticket buyer credit card IS IN COLUMN credit_card OF TABLE tickets.
trip destination IS IN COLUMN destination OF TABLE schedules.
trip date IS IN COLUMN date OF TABLE schedules.
email IS IN COLUMN e_mail OF TABLE newsletter.

OPERATION-MAPPING:
see schedules IS MAPPED TO ENDPOINT GET /schedules.
buy ticket IS MAPPED TO ENDPOINT POST /buy_ticket.
see purchase history IS MAPPED TO ENDPOINT POST /purchase_history.
subscribe to newsletter IS MAPPED TO ENDPOINT POST /subscribe.

DATA-OWNERSHIP:
OWNER IN TABLE tickets IS IN COLUMN name.
OWNER IN TABLE newsletters IS IN COLUMN e_mail.

Figure 5: An example of a RuleKeeper policy for Webus.

field. To process personal data with regard of whom
it belongs to, e.g., to verify consent preferences, the
DATA-OWNERSHIP field associates each database table with
the embedded column that represents the owner of the
data (i.e., data items present in a given row belong to
the data subject identified by the ownership column). In
Webus, column “name” identifies the owner of the data in
each row of the “Tickets” table and the “e mail” column
tells the owner of the data of the “Newsletters” table. At
runtime, RuleKeeper will also need to rely on information
provided by the application to make complete access control
decisions, e.g., the identity of a currently authenticated user.

3.2. Validating Policies with Static Analysis

Web developers use RuleKeeper in the offline phase to
check if the application code satisfies the restrictions speci-
fied in the GDPR manifest (e.g., check for compliance bugs
in the implementation of “buy ticket”). RuleKeeper verifies
this using a static code analysis pipeline. After giving an
intuition of our approach, we describe each pipeline stage.



const express = require('express');
const mongoose = require('mongoose');

require('./models/tickets');
const Ticket = mongoose.model('tickets');

const app = express();
const router = express.Router();

router.post('/buy_ticket', function(req, res) {
  
 const { name, credit_card, destination,       
    schedule } = req.body;

 const ticket = {
    name: name,
    destination: destination,
    date: Date.parse(schedule),
    credit_card: credit_card,
  };

 Ticket.create(ticket, (err) => {
   if (err) { res.sendStatus(400) } 
   else res.sendStatus(200); });
});

Program

Endpoint

'buy ticket'POST Queries

#1 const express = require('express')

Query #1

tickets columns

name

destination

date

credit_card

method identifier body

table

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1. Code Representation Graph construction 2. Data Processing Graph construction

#2 const mongoose = require('mongoose')

#3 const Ticket = mongoose.model('tickets')

#4 const app = express()

#5 const router = express.Router()

#6 router.post('/buy_ticket', function(req, res)

#7 const { name, credit_card, destination,
schedule } = req.body;

#8 const ticket = { name: name, destination:
destination, date: Date.parse(schedule),

credit_card: credit_card };

#9 Ticket.create(ticket, (err) => { 
   if (err) { res.sendStatus(400) }
   else res.sendStatus(200) });

OBJ mongoose

OBJ
express

VAR express

OBJ
router

OBJ
req

VARS [ name, date,
destination, credit_card]

VAR
ticket

OBJ
Ticket

#1 const express = require('express')

#2 const mongoose = require('mongoose')

Figure 6: Static analysis stages for Webus sample code: the program is modeled into a CRG, which is then processed into a DPG.

Approach overview: Our approach is divided in two steps:
first, we generate a model of the web application code which
we call Data Processing Graph (DPG), and then we use the
DPG to search for inconsistencies in the manifest. The DPG
aims to automatically create a picture of the web application
that can tell us: i) all the operations that exist in the code,
and ii) all the data types accessible to each operation. Based
on this information, we can then check if operations’ data
accesses are legal by comparing them against the respective
specification in the GDPR manifest. Figure 6 showcases a
DPG sketch that reflects a toy implementation of the “buy
ticket” operation pertaining to Webus. In a nutshell, the
DPG: i) identifies each operation with an API endpoint
and the code associated with it (e.g., /buy ticket), and
ii) identifies the accessed data types based on the database
queries performed by the code at the endpoint (e.g., through
Ticket.create). The static analysis automatically extracts
the endpoints and data queries executed at those endpoints
based on an intermediate representation that we call Code
Representation Graph (CRG). Next, we explain how these
data structures are generated during code analysis, and then
describe the algorithm for compliance checking.

1. Generating the Code Representation Graph: To build
the CRG, we adapted the idea of code property graphs [26–
28] to server-side JavaScript, with support for object de-
pendencies. Thus, the CRG combines the abstract syntax
tree (AST), the control flow graph (CFG), and the program
dependency graph (PDG) in a single graph structure. In
the CRG of Figure 6, the AST nodes are represented with
numbered rounded boxes. For simplicity, we omit the AST
edges and summarize the information in Statement nodes –
see [29] for the complete CRG. The CFG and PDG edges
between AST nodes are represented in red and green, re-
spectively. First, RuleKeeper parses the JavaScript code and
builds the corresponding AST. The AST is then traversed to
produce the CFG, which creates edges between consecutive
code statements and to possible branching operations – if,
while, etc. Finally, the CFG is traversed to determine data
dependencies between code statements, producing a PDG.

A data dependency can be classified as variable dependency
(VAR) or object dependency (OBJ). To clarify the differences,
consider the example in Figure 6. The program declares the
variable express (line 1) and variable app (line 7), which
depends on the former. Thus, our analysis creates a data-
dependency edge between these statements with the label
VAR express. On the other hand, the statement at line 8
declares a new variable router that also depends on express,
but this time the content of the router variable does not
directly depends on the value of the variable express, but
instead on the value of a property of the express object. Con-
sequently, a data-dependency edge between these statements
is created with the label OBJ express. This analysis is intra-
procedural. The output of this step is the CRG, which can
then be queried using a graph database querying language
to extract information for building the DPG.
2. Generating the Data Processing Graph: To build the
DPG, we import the CRG into a graph database to allow for
graph traversals, i.e., queries to check how data is being pro-
cessed within the application. Next, we give an overview on
the algorithm used to extract relevant information from the
CRG using Figure 6 as an example. Our queries expect that
the application implements endpoints and database queries
using Express.js and Mongoose API calls.

1) First, we query the CRG for the registered end-
points, by searching code statements that register routes
through function calls to Express.js’s Router object. In
the example of Figure 6, the query finds the statement
that registers the POST endpoint (node #6) and checks
if it depends on the Router object (node #5). Then, we
inspect the AST to extract both the path for the end-
point /buy ticket – first argument of the call in node
#6 – and the callback function – second argument. This
callback is executed when the /buy ticket endpoint is
accessed and contains statements that handle user data.

2) Next, we query the CRG for the database queries
executed in the context of each endpoint. First, we
search for patterns that correspond to model calls (node
#3), which depend on the Mongoose module (node #2),



and extract the model name (tickets) by inspecting
the AST. We then search for calls using the Mongoose
Query API, such as create (node #9), that: i) depend
on the model call identified before (node #3), and ii)
are made inside the scope of the callback registered to
the endpoints, such as /buy ticket (node #6).

3) Finally, we search the AST of the Mongoose query
calls for the data accessible (read or written) by the
query. In this example, the inserted data corresponds to
the first argument of the create call (variable ticket).
For other Mongoose queries, e.g., findOneAndUpdate,
the inserted data is in the second argument position.
Since ticket is an object, we know that Mongoose
will insert its properties into the database. With this
information, we can generate a DPG for the policy
compliance verifier. The DPG clearly tells that columns
name, credit card, destination, and schedule of table
tickets are handled whenever the POST endpoint with
path /buy ticket is accessed, as shown in Figure 6.

3. Checking the DPG for policy compliance: From the
resulting DPG, our analysis checks if the GDPR manifest
reflects how the application processes personal data. The
policy compliance verifier parses the manifest into a DPG-
like data structure that associates endpoints with the personal
data that the endpoints are allowed to process (e.g., endpoint
POST /subscribe is associated with column “e mail” of
table “newsletters”). This way, one can directly match the
information in the manifest with the DPG. At this point, the
policy compliance analysis is divided in three validations:

1) Personal data processing: Looks for operations that
process personal data but have not been declared in
the manifest. To this end, RuleKeeper uses from DPG
a filtered list of endpoints that process personal data.

2) Purpose limitation: Screens purpose limitation viola-
tions. RuleKeeper uses DPG, filtered with queries that
process personal data, and checks if any personal data
item is processed by an operation for a purpose that is
not represented in the DPG-like manifest data structure.

3) Data minimization: Similar to 2), but checks if any
operation for a given purpose processes more data than
the represented in the DPG-like manifest data structure.

4. Debugging inconsistencies: If RuleKeeper’s static anal-
ysis endorses the GDPR manifest, showing that it reflects
the way that the application is processing personal data,
then the application is ready for deployment. Otherwise, the
developer must fix the detected inconsistencies. These bugs
can either stem from an over-permissive application code or
from an inaccurate GDPR manifest. Our tool reports them
by indicating, for each endpoint: which data is expected to
be processed (i.e., declared by the manifest), which data is
actually being processed by the application, and which of
the previous three validations is failing. The developer can
either opt to i) update the application code, if she considers
the code is over-permissive (i.e., processing more data than
acceptable), or ii) update the policy to match the application
code. If i), she simply needs to remove the unnecessary
personal data from the query. If ii), she can: (1) update the

new user(string user id, string pass hash, string role, string
owner id, string gdpr role) ⇒ ()

Creates a new user with a password, roles and the entity it represents.
authenticate(string user id, string pass hash) ⇒ (string token)

Authenticates a user and returns an authentication token.
remove user(string user id) ⇒ ()

Removes user.

Table 1: RuleKeeper’s user-related data management API.

DATA-COLLECTION rule in the manifest to include the personal
data, if she considers the purpose of the operation, defined
in the EXECUTED-FOR rule to be correct, or (2) update the
EXECUTED-FOR rule, to amend the purpose of the operation.
Other bugs may arise from inaccurate mappings, which the
developer must also examine and fix if necessary.

3.3. Enforcing Policies at Runtime

RuleKeeper relies on a complementary policy enforce-
ment mechanism at runtime for two reasons. First, access
control may change depending on individual users’ consent
to the data protection policy. Users may even selectively
give their consent per purpose, which means that policies
end up being dynamic. Second, due to limitations of static
analysis in tracking program execution state, validating user
requests at runtime constitutes the second and definitive
line of defense for preventing GDPR violations. Next, we
describe RuleKeeper’s dynamic policy enforcement, starting
by explaining how users give consent to the privacy policy.
Sticky banners: RuleKeeper displays a popup message to
website visitors telling the purpose of the operation(s) and
the data that will be collected. This popup – named sticky
banner – is automatically generated by RuleKeeper off of
the website’s GDPR manifest. RuleKeeper will then record
the user’s preference (i.e., give/deny consent) and block all
operations for which consent has been declined. Usability
wise, users may feel annoyed if prompted too frequently
for every operation. In contrast, showing a banner a single
time asking for permission to collect all personal data types
processed by the website may be overly permissive. To
cope with this well-known security-usability trade-off, Rule-
Keeper lets web developers configure sticky banners with
three display options: i) per-site: shows the sticky banner to
the user only once presenting the website’s complete policy,
ii) per-operation: shows the banner for every new operation
that processes personal data, and iii) per-purpose: shows
the banner once per purpose, as the website requests access
to personal data for a specific purpose for the first time.
Sticky banners can be merged with cookie banners in the
per-site scenario, but cannot for other display options, as
sticky banners may need to be shown as the user navigates
deeper into the website.
Managing users: Besides specifying the sticky banner op-
tion, developers must help RuleKeeper associate consent
preferences to users. Remembering the preferences of each
user is essential by the time the middleware needs to
make access control decisions. To this end, RuleKeeper’s
middleware contains a built-in authentication mechanism
that exposes a user management API (see Table 1) which



developers should use to create, authenticate, or remove
users. This API provides an interface to the manager service,
which stores user-related information on a local database,
including user consent preferences as described next.
Tracking users’ consent preferences: When a user wants
to perform an operation, RuleKeeper’s middleware inter-
cepts the HTTP(S) request and checks if the user has already
given their consent for the operation’s purpose. If so, the op-
eration proceeds; otherwise, the corresponding sticky banner
pops up, only letting the operation continue if a positive
consent is given. To keep track of users’ past preferences,
RuleKeeper stores positive consent records in the “Users
& Consent” table and sends a consent cookie to a user’s
browser by the first time the user submits their consent
preferences. The way this cookie is linked with a user’s
identity and consent preferences depends on two cases:
• Transient users: Users may need to share their personal

data only within the context of a single web session. E.g.,
Webus allows users to buy tickets without creating an
account. As no account was created using the new user()
API call (see Table 1), RuleKeeper uses the consent
cookie as user identifier for as long the session lasts.

• Authenticated users: When users create an account and
log into the website, RuleKeeper maps the consent cookie
to the current user identity by invoking an API call:
authenticate(). It works independently of the authentica-
tion mechanism itself, as it only needs to be invoked after
a successful user authentication. An authentication token
enclosed in the consent cookie serves as user identifier.

To avoid frequent queries to the “Users & Consent” table
(see Figure 4), we enclose the list of purposes approved by
the user in the consent cookie. Therefore, every time the user
interacts with the website, RuleKeeper is able to extract the
user’s consent preferences from the cookie itself.
Runtime policy enforcement mechanisms: To make ac-
cess control decisions at runtime, RuleKeeper relies on two
separate hooks: HTTP hook and DB hook, both application-
independent. The HTTP hook is located at the application
entry point: it intercepts HTTP requests from the user’s
browser and validates the request’s context. The DB hook
is located at the application/database boundary, intercepting
and validating the database queries. Next, we explain how
these hooks work as they intercept and process user requests:
1. Intercepting an incoming HTTP request: RuleKeeper
first needs to maintain some context ready before the policy
can be evaluated. To this end, the HTTP hook first identifies
the user, whether through authentication or a session identi-
fier. Then, it associates his consent preferences. RuleKeeper
automatically detects the operation, by combining the URL
and method of the HTTP request. When both the user and
operation are identified, it performs access control valida-
tions based on information provided by the application.
2. Intercepting a database query request: This hook
intercepts database write query requests and performs two
steps. First, it validates the query based on the owner of the
data being queried. To find the data owners, RuleKeeper
uses the DATA-OWNERSHIP rule and performs an extra query

1. for all d ∈ pdata exists pd ∈ DATA-COLLECTION(d) and
exists po ∈ purposes, such that po ∈ pd
2. for all d ∈ pdata and po ∈ purposes, d ∈ DATA-COLLECTION(po)
3. for all d ∈ pdata and po ∈ purposes, if LAWFULNESS-BASE(po)
is consent, then for all o in owners(t), p ∈ consent(o)
where pdata ← DATA-MAPPING(d) ∈ PERSONAL-DATA ∧
purposes← EXECUTED-FOR(OPERATION-MAPPING(e))

Figure 7: Policy evaluation conditions.

applying the same conditions as the original, which returns
the value stored in the ownership column. To reduce over-
head, RuleKeeper first checks if one of the columns of
the query is the ownership column; if it is, it promptly
returns that value. Secondly, RuleKeeper makes an access
control decision based on the algorithm sketched in Figure 7.
Given an endpoint e that processes data d, e will only be
allowed to be executed by the user u if three conditions
are satisfied: 1 and 2 validate purpose limitation and data
minimization; 3 validates the lawfulness of processing (i.e.,
consent validation). This nomenclature reflects the DSL
primitives specified in Section 3.1, with the exception of
owners(d), which represent data subjects owning queried
data d, and consent(o), which denotes the consent of each
data owner. In case of a positive authorization decision, the
request continues to the application, otherwise it is denied.
3. Intercepting a database query response: This hook
intercepts database read query responses and applies the
same logic as above. read queries must be intercepted after
the query is executed to obtain with precision the data that is
trying to be accessed. By contrast, write must be intercepted
before the query is executed to prevent it from performing
modifications of personal data without permission.

3.4. Policy Enforcement Properties and Limitations

Policy enforcement relies on a combination of static
and dynamic analyses employed at development time and at
runtime, respectively. Together, they aim to prevent GDPR
compliance violations in a web application based on the
policy specification given in the GDPR manifest. Next,
we discuss the main properties of our policy enforcement
techniques, focusing separately on precision and soundness.
Precision: Precision weighs the number of false positives in
reporting inconsistencies between the web application and
the GDPR manifest. As discussed in prior art [27, 30, 31],
due to the dynamic nature of JavaScript, performing a
precise and accurate static analysis of JavaScript-based web
applications is difficult and may lead to misclassifications.
Likewise, RuleKeeper’s static analysis may report false in-
consistencies between application code and GDPR manifest.
For instance, CFG and DPG may contain edges that reflect
implicit hidden flows; hence, the resulting CRG may contain
seemingly violating edges that may never get triggered in
practice. (In Section 8, we examine the obtained false posi-
tives while testing RuleKeeper with real-world applications.)
Pruning out false positives requires manually analyzing the
application to check if its code is fully compliant with the



manifest. Nevertheless, despite the added effort to the devel-
opers, RuleKeeper’s static analysis brings two key benefits.
First, it acts as a pre-filter [30] to preemptively identify
true violations that would otherwise be detected at runtime
only. Such a deferred detection (and consequent blocking)
could impair service availability and increase maintenance
costs. Second, RuleKeeper’s static analysis can be used as a
debugging tool to help developers reason about the privacy
implications of their code and early-detect compliance bugs,
as we demonstrate in the user study presented in Section 7.
Soundness: A sound analysis eliminates false negatives, i.e.,
RuleKeeper will not fail to report an existing inconsistency
between application and GDPR manifest. This is the most
critically-desired property for RuleKeeper, as it must not
tolerate GDPR compliance violations to go past undetected.
Unfortunately, RuleKeeper’s static analysis is not sound, and
thus can have false negatives. For instance, it relies on the
AST to learn the path and the callback function of each
endpoint of the target application. However, this information
may not be statically accessible in the AST; for example,
in one use case application studied in Section 6, the path
is the return value of a function invocation and not a static
string, rendering it impossible to annotate the DPG with
endpoint information for this application. JavaScript is also
known for its dynamic code generation capabilities, such as
the eval function, which can result in missing function calls
and lead to an incomplete CFG. In such cases, the resulting
CRG may lack some edges that can result in violations of
the GDPR manifest. To prevent false negatives, we leverage
RuleKeeper’s existing runtime infrastructure with a dynamic
policy enforcement mechanism (see Section 3.3). At run-
time, RuleKeeper can intercept all the concrete execution
flows and monitor the observable violating flows skipped
by the static analysis. Therefore, complementing static with
dynamic analysis guarantees soundness, ensuring that all
non-compliant data processing flows are detected as long as
the manifest is complete. If the manifest is incomplete, e.g.,
missing the definition of a personal data type, the verified
properties may not be the ones intended by the developer. To
avoid this problem, manifests can be specified with the aid
of automatic personal data classification tools [32], cross-
validation by several developers, and cooperation with DPO.

4. Implementation

We implemented a full prototype of RuleKeeper. Our
code is available open source [29]. The middleware was
written in JavaScript for Node.js v14.16.1 + Express v4.16.1
and MongoDB Community Server v5.0.2, supported by
Mongoose v5.13.9 ORM [33], with 1095 lines of code
(LoC). To intercept HTTP requests, we use Express built-
in application-level middleware. To intercept MongoDB
queries, we use Mongoose global plugins. As for developers’
coding style, we only expect a proper use of Mongoose and
Express API calls as per the prescribed documentation.

We deployed the policy engine inside the middleware us-
ing Open Policy Agent v0.36.0 (OPA) [34], an open source
policy engine that enforces Rego [35] policies. Rego extends

Datalog and allows for assertions on structured data stored
in JSON documents. OPA makes context-aware policy deci-
sions in the middleware by querying a Rego-compiled policy
that encodes our GDPR compliance conditions along with
JSON documents that contain both the dynamically fetched
data from the manager and the manifest. We integrate OPA
with RuleKeeper using the OPA WebAssembly [36] module.

The manager was written as a Node.js v14.16.1 + Ex-
press v4.16.1 and MongoDB Community Server v5.0.2 web
application, with 1461 lines of JavaScript and TypeScript
code. Communication uses Socket.IO v4.3.1 [37] events.

We implemented RuleKeeper’s static analysis tool using
the Esprima v4.0.1 [38] parser with 2111 lines of JavaScript
code. This analysis outputs the graph’s nodes and edges
that are later imported to a graph database. We used Neo4j
v4.2.1 [39] as the graph database engine and a custom
Python script, with 390 lines of code, to execute 11 custom
queries that extract relevant information from the graph.
Portability: Although we target MERN for its popular-
ity [40, 41], RuleKeeper relies on two general techniques
that can be adapted to web stacks exposing similar program-
ming abstractions, i.e., model-view-controller and REST
APIs: (i) DPG creation in the static analysis, and (ii) mid-
dleware hooks in the runtime analysis. For JavaScript-based
web frameworks, porting RuleKeeper would require the
adaptation of these techniques to new database and hook
interfaces. For other programming languages, e.g., PHP,
static analysis could leverage already existing tools [42, 43].

5. Case Studies

To assess the expressiveness of RuleKeeper’s policy lan-
guage and its fitness for real-world scenarios, we conducted
four case studies: one where we built the web application
from scratch, and the others based on legacy applications.

5.1. GDPR Compliance in LEB

We collaborated with the clinical laboratory LEB - Lab-
oratórios Elisabete Barreto [44] to develop a prototype in-
tranet service for supporting its internal business processes.
Our main goal was to study how well RuleKeeper is able to
accommodate GDPR data protection requirements of such a
privacy-sensitive application space as the healthcare domain.
GDPR requirements for clinical laboratories. APAC [45],
a Portuguese association for clinical analysts, developed a
turnkey GDPR framework that establishes guidelines for
achieving GDPR-compliance in clinical laboratories such as
LEB. To ensure that LEB’s intranet service follows these
guidelines, we extensively analyzed APAC’s impact assess-
ment reports from which we drew essential information for
the specification of LEB’s manifest, such as the data types
that constitute personal data and the purposes of usage.
Prototype implementation. We analyzed LEB’s internal
processes that manage personal data. Then, for simplicity,
we implemented a MERN-based intranet prototype focusing
on the pre-analytic process, which is responsible for patient



registration and specimen processing. It supports three types
of users: patients, receptionists, and system administrators.
We implemented seven controllers (see Appendix A) for
supporting the operations: (i) patient registration by recep-
tionists, (ii) patient data handling by both receptionists and
patients and (iii) user management by system administrators.
Code integration. Integrating RuleKeeper with LEB’s pro-
totype was relatively simple. First, we imported Rule-
Keeper’s middleware with 3 lines of code (LoC) and in-
tegrated RuleKeeper’s user management API calls, adding
a total of 5 calls. Then, we deployed RuleKeeper manager
and specified LEB’s GDPR manifest with our DSL.
GDPR manifest. LEB had in place a human-readable pri-
vacy policy and a specific document to inform their patients
on how LEB a) processes personal data and b) applies data
protection principles, complying with Articles 12, 13, and
14 of the GDPR [1]. To write LEB’s GDPR manifest, we
combined information from these documents with APAC’s
impact assessment reports and LEB’s internal processes.
In total, we specified 66 DSL statements, including 11
personal data types, 2 purposes, and 10 operations. From this
exercise, we verified that RuleKeeper’s DSL is expressive,
allowing us to fully specify a non-trivial, real-world policy
covering the GDPR guidelines in scope (see Section 2.1).

5.2. Compliance in Legacy Applications

To study the challenges of retrofitting complex applica-
tions to work with RuleKeeper, we browsed popular open-
source web applications in GitHub. From the 37K Express.js
projects found, we filtered the most popular (>1K stars),
resulting in 49 candidates, and further selected those pro-
cessing personal data, obtaining eight projects. Lastly, we
picked the three most elaborate applications regarding their
data model/operations. Habitica [46] is a task manager with
over 1M downloads in Google Play [47] and 9k GitHub
stars. It is our most complex use case, comprising 28K lines
of server-side code maintained for +10 years by 715 con-
tributors. Amazona [48] is an Amazon-style, e-commerce
application where users can order and review products (1.3k
GitHub stars), and Blog [49] (3.3k GitHub stars) is a blog
application for posting and commenting on articles. Both
are simpler than Habitica but manipulate other personal data
types that are likely to also be used in other applications.
Next, we report our experience on integrating RuleKeeper
with these applications, underlying the most complex case.
Habitica. This application is a habit building program where
users complete tasks that represent real-life goals. We stud-
ied its data model and source code based on our knowledge
of its workflow. Habitica’s database contains 15 collections,
including “Users” and “Tasks”, which we considered the
most relevant. The “Users” collection contains information
about Habitica’s users, such as authentication, purchases,
and preferences, comprising over 300 fields of data. Habit-
ica’s API includes over 200 routes. We survey some of the
operations that we considered most relevant in Appendix A.
Code integration. Table 2 lists the added lines of code to
integrate RuleKeeper’s middleware in each application. The

Application DSL Statements Lines of Code
Personal Data Purposes Operations Total

LEB 11 2 10 66 8
Habitica 14 3 21 168 10
Amazona 13 3 15 161 7

Blog 11 2 18 127 6

Table 2: GDPR manifest and implementation effort.

modified application versions can be downloaded from [29].
Habitica required more effort than others (10 LoC added),
since its code does not follow the typical structure of Node.js
+ Express.js applications. Blog did not require authentica-
tion calls since RuleKeeper natively supports its authentica-
tion mechanism (passport with local strategy [50]). Overall,
we consider this effort low when compared with the current
alternative, i.e., manually adapting the application code to
give similar guarantees as RuleKeeper’s, without bugs.
GDPR manifest. To write a GDPR manifest for each legacy
application, we studied their existing privacy policies and
combined this information with our obtained knowledge of
the source code. Table 2 shows that the number of DSL
statements needed to write applications’ respective manifests
is quite manageable. In Habitica, the most complex case,
the manifest comprises 168 statements in total, covering 14
relevant personal data types and 21 operations. Here, we
considered as personal data the data directly associated with
users in the collection “Users”, and defined the purposes as
member-, group-, and task management. In all applications,
similar to the LEB case study, RuleKeeper’s DSL can fully
express the data protection requirements in our scope.

6. Experimental Evaluation

Our evaluation aims to answer the following questions:
1) What is the cost of RuleKeeper’s runtime processing? We

find that the overhead added by runtime hooks is 1.21×
on average, dominated by the policy enforcement logic.

2) What is the client-perceived latency introduced by Rule-
Keeper? We measured the latency from the perspective
of Web clients and observed a 13% increase in average
latency when using RuleKeeper on legacy applications.

3) What is RuleKeeper’s impact on the number of requests
per second that a web application can sustain? We ob-
serve Habitica’s behaviour when saturated and find it
sustains less 11.9% of the requests in the worst case.

4) What is the impact of RuleKeeper in resource usage?
CPU and memory usage increase, on average, in 4.84%
and 3.87% respectively, in a saturated system.

Experimental setup. Our testbed consisted of four 64-bit
Ubuntu 18.04.5 virtual machines (VMs) with 32GB of RAM
and an 8-core Intel Xeon E5506 2.13GHz CPU deployed
on different physical machines interconnected by a 1Gpbs
LAN. VM1 is configured with our use-case web applica-
tions (LEB, Habitica v4.189.0, Amazona, and Blog) running
as a Node.js + Express server. VM2 runs a MongoDB
Community Server v5.0.2 database storing application data.
VM3 hosts the RuleKeeper Manager, and VM4 runs the



Tid Task Query Entity
L1 As a patient, access own patient data. Read Data Subject
L2 As a patient, update own patient data. Update Data Subject
L3 As a recepcionist, access a patient’s data. Read Controller
L4 As a recepcionist, update a patient’s data. Update Controller
L5 As a recepcionist, access several patient data. Read Controller

Table 3: User tasks used for benchmarking LEB.

App Server Latency Client Latency Throughput Efficiency
5th avg. 95th 5th avg. 95th min. avg. max. cpu mem.

L 1.08× 1.26× 1.34× 1.06× 1.20× 1.25× 0.66× 0.74× 0.94× 7.40% 4.23%
H 1.14× 1.16× 1.19× 1.09× 1.10× 1.12× 0.88× 0.91× 0.94× 3.67% 7.15%
A 1.07× 1.14× 1.21× 1.04× 1.14× 1.26× 0.70× 0.85× 0.96× 2.30% 1.32%
B 1.25× 1.26× 1.27× 1.07× 1.15× 1.22× 0.70× 0.74× 0.77× 6.00% 4.58%

Table 4: Summary of RuleKeeper’s experimental evaluation.
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Figure 8: User task latency overhead in LEB, normalized to Base.
Labels show RuleKeeper absolute latency in ms.

client-side experiments with up to 64 client threads running
simultaneously. For LEB, we measured different user tasks
whose parameters may influence RuleKeeper’s performance
(e.g., whether a task involves a read or an update query).
Table 3 lists these tasks (Lx). For the other applications, we
picked three tasks representative of frequent user activities:
for Habitica, we considered H1: get user profile, H2: create
a new task and H3: score an existing task; for Amazona,
A1: check available products, A2: order a product and A3:
check my orders; and for Blog, B1: get open articles, B2:
get my blog profile and B3: comment on an article. We used
wrk [51] to simulate traffic by generating HTTP requests for
each one of the user tasks for 10 minutes each.
Server-side latency. Table 4 presents a summary of our
results. To gauge the server-side overheads of RuleKeeper,
we measured the total execution time of the selected user
tasks for each application without RuleKeeper (Base) and
with RuleKeeper, on the server side, reporting the arithmetic
mean and 5th/95th percentiles. As shown in the first column
of Table 4, the relative overheads introduced by Rule-
Keeper’s runtime hooks in legacy applications range from
1.07 to 1.27×. For the legacy applications, Blog presents
the highest overhead (1.27×) because tasks B2-B3 perform
several short queries that increase the relative contribution
of RuleKeeper’s runtime hooks to the total execution time
of each task. This effect is also visible in LEB, where each
task is very simple and only contains basic database queries,
leading to a similar increase in the relative overhead. Over-
all, RuleKeeper only introduces an average absolute latency
of 1.6ms per query. Given that in LEB each task performs a
single query (see Table 3), we can use it to better understand
the source of RuleKeeper’s overheads. Figure 8 showcases
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Figure 9: Average client-perceived latency in legacy application
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Figure 10: Habitica task scoring throughput.

LEB’s overhead per task normalized to base, broken down
into four logical components performed by RuleKeeper’s
runtime hooks. In general, these overheads are dominated
by the execution time of the OPA WebAssembly module
responsible for policy enforcement, including access control
decisions. In L5, we observe a lower relative overhead
because this task is more expensive as it involves the data
of several patients, making the overhead less noticeable.
Client-side latency. We measured the response latency from
the perspective of a web client (i.e., requests’ RTT), exclud-
ing web page loading and rendering. Figure 9 presents the
average latency of the legacy applications with RuleKeeper
(blue bars) and without RuleKeeper (grey bars). On average,
the client-perceived latency increase for legacy applications
is 13.2%. In absolute terms, these are small client-perceived
overheads and likely unnoticeable to Internet users.
Throughput. We also study how RuleKeeper affects the
throughput. For Habitica, since most user actions are based
on completing tasks, we used wrk to measure the amount of
scored tasks (H3) that it can withstand per second, varying
the number of concurrent clients (generating requests at a
constant rate) until the server is saturated. Figure 10 reports
the average H3 requests per second without RuleKeeper
(grey series) and with RuleKeeper (blue series) as the num-
ber of concurrent clients increase from 1 to 64; a rate of 140
requests per second sufficed to saturate the CPU. We can
see that, with RuleKeeper, Habitica responds to 11.9% fewer
requests when saturated. Measuring the throughput also for
H1-H2, and computing the average across of H1-H3 gives
approximately a 9.3% throughput reduction for Habitica, as
reported in Table 4. This table also shows the throughput
reduction for the other applications, computed similarly to
Habitica. This reduction reflects the extra processing cost
added by RuleKeeper, which is the price to pay for better
security and policy compliance guarantees. Blog and LEB
present the highest throughput reduction for the reasons
mentioned in the “server-side latency” paragraph.



Resource utilization. We measured the CPU and memory
usage in saturation. We stressed RuleKeeper for saturation
settings of 215, 96 and 138 requests per second (reqs/sec)
for Habitica tasks (respectively), 24, 190 and 108 reqs/sec
for Amazona’s, 95, 265 and 83 reqs/sec for Blog’s and 429,
431, 419, 429 and 7 reqs/sec for LEB’s. Table 4 presents the
mean of CPU usage and memory usage, using dstat [52].
On average, RuleKeeper modestly increases CPU usage
in 4.84% and memory usage in 3.87%. The RuleKeeper
manager is lightweight as it consumed on average 0.05% of
CPU and 41MB of memory on standby, and 0.1% of CPU
and 45MB of memory when receiving 1000 requests/hour.

7. Usability Study

To assess RuleKeeper’s usability, we conducted a user
study focused on answering two main questions: Q1) How
much effort do developers take to specify a GDPR manifest
based on a privacy policy written in English? Q2) How
hard is it for them to debug inconsistencies between GDPR
manifest and application code in the static analysis phase?
Methodology: As in prior usability studies [53–55], our
subject group consists of ten participants. Since CS students
are considered acceptable substitutes for developers [56, 57],
we recruited CS students from our university. To minimize
bias, candidates had no GDPR background, no prior knowl-
edge of the test applications, and no specialized training in
security. Five were MSc students with general CS education;
five were Ph.D. students in distributed systems. We collected
no personally identifiable information and did not pay them
monetarily. Then, we asked them to perform two tasks.
1) Specification task: To study Q1, we asked participants

to write the GDPR manifest from scratch for a real-
istic, non-trivial policy. We selected the LEB use case
because it has a non-trivial data model without being an
overly complex and time-consuming application to ana-
lyze. LEB’s relative simplicity helps to keep participants
focused on RuleKeeper-related tasks. We gave them the
LEB’s privacy policy written in natural language and the
application source code and asked them to write a GDPR
manifest that reflected both the application and the pri-
vacy policy requirements. Participants were encouraged
to run RuleKeeper to check for inconsistencies.

2) Debugging task: As for Q2, the goal was to solve an in-
consistency detected by the static analysis. We introduced
an “incompatible purpose” violation in the LEB’s source
code reproducing Webus’s bug described in Example 1
of Section 2.2. We changed one of LEB’s operations
to access data that was not meant to be used for the
operation’s original purposes. We asked participants to
detect and fix this inconsistency using RuleKeeper.
We provided the participants with i) a guide introducing

RuleKeeper using Webus as an example (similar to Sec-
tion 3.1) and ii) a Vagrantfile to set up a VM containing the
static analysis tool and the use cases’ source code (available
in [29]). We gave them 45 minutes of training time to read
the guide and study the source code of the LEB application.
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Figure 11: Time for participants to perform the tasks. The box
extends from the 1st to the 3rd quartile; the median line is shown.

We measured: the total time each one took to complete
a task (c1), number of correctly specified DSL statements
(c2), and ability to detect and solve the inconsistency using
RuleKeeper (c3). In the end, we asked for general feedback.
Findings: Concerning criteria c1, all ten participants com-
pleted both tasks within reasonable times (see Figure 11).
For the specification task, they took on average 34.1 min-
utes, and for the debugging task, as few as 7.1 minutes to
solve the inconsistency. As for manifest correctness (c2), one
participant failed to specify a personal data item, resulting in
4 missing DSL statements out of the 66 expected ones. All
the other nine manifests were fully correct. Regarding c3, all
the participants managed to fix the bug. Their solution was
to update the manifest’s collected-for rule to include the
additional accessed personal data, thus offering end-users
complete transparency. When interviewed after the study,
they all highlighted the simplicity of RuleKeeper’s DSL.
Most participants (60%) said having spent more time writing
down the manifest’s statements than reasoning about the
logic, which suggests that a visual programming interface
may help speed up this task. Their feedback was very pos-
itive, underlining RuleKeeper’s usefulness as a debugging
tool. For instance, seven participants reported having typos
on their first try but were able to detect them quickly on
account of the output of our static analysis tool.

8. Security Analysis

Detection of compliance bugs: To evaluate if RuleKeeper
can mitigate the GDPR compliance threats of Section 2.2,
we injected similar bugs in Webus and replicated them for
the other use cases. For examples 1, 2, and 3, RuleKeeper
blocks all unlawful queries. Surprisingly, in Habitica, we
detected additional queries being blocked by RuleKeeper.
This happened because Habitica was processing unnecessary
user-related data for several operations, therefore violating
the data minimization principle. We then rectified Habitica’s
code by removing accesses to that data from GET /user
and POST /user/auth/local/login and confirmed that it
remained as functional as before. This finding strengthens
RuleKeeper’s value in detecting existing compliance bugs.
Static analysis: Table 5 shows several evaluation metrics
for the static analysis running across our use cases except
for Habitica; in Habitica, compliance bugs can be detected
at runtime only as it merely defines the Express.js’ Router
at the time of execution. We collected: CRG size, execution



Application CRG Size Execution Time (s) Accuracy
Nodes Edges CRG DPG Queries (N,C) EM-pairs

LEB (257 LoC) 1047 1710 0.201 27.814 21.213 10/11
Amazona (570 LoC) 2238 4508 0.357 41.154 34.520 16/16

Blog (1075 LoC) 4189 8987 0.637 589.669 540.623 31/34

Table 5: Static analysis engine metrics.

times, and accuracy metrics. The CRG size increases almost
linearly on the application LoC size. We measured the
execution times of two distinct stages: i) CRG generation,
and ii) CRG querying to extract the DPG. For the second
stage, we gauge execution times with (C) and without (N)
the Neo4j cache. For larger graphs, the queries’ execution
time grows to the order of minutes, but it does not affect
the application execution time as static analysis runs offline
and only occasionally when changes occur in the application
code or manifest. Regarding accuracy, our static analysis
correctly identified 57 out of 61 endpoint-model (EM) pairs,
where EM pairs correspond to the queries executed in the
context of an endpoint. The missed EM pairs occur as a
limitation of static analysis (see Appendix B for details).
GDPR compliance analysis: While RuleKeeper can ver-
ify purpose limitation, data minimization, and lawfulness
of processing properties, it alone cannot guarantee full
GDPR compliance as this regulation is much broader (see
Appendix C). Nevertheless, RuleKeeper partially improves
transparency, as sticky banners are automatically generated
from the GDPR manifest albeit missing information such as
data retention policies. Security of processing is improved
by RuleKeeper’s access control mechanisms. With future ex-
tensions, RuleKeeper can also implement storage limitation
and accuracy preservation policies. Currently, it does not
prevent GDPR violations caused by client-side scripts, as it
is out of the scope of our work. However, this issue could be
tackled with similar techniques to PoliCheck [58]. SDP [59]
and user shards [60] can help cover complementary GDPR
requirements to RuleKeeper’s, namely storage limitation and
accountability, and data subjects’ rights, respectively.
Threat analysis: We discuss two attacks attempting to
subvert RuleKeeper’s policy enforcement mechanisms:
• Middleware tampering: RuleKeeper’s HTTP hook is saved

by Express.js in an array that contains Express’s middle-
ware stack; the DB hook is also stored by Mongoose in
an array containing the Mongoose plugins. If a remote
attacker can gain access to these variables, he can disable
RuleKeeper’s hooks by simply modifying the arrays. To
prevent this, RuleKeeper disallows further modifications
to the arrays by changing their properties [61].

• Cookie theft attacks: In an alternative attack [62], attackers
may attempt to hijack the cookies used by RuleKeeper,
which could leak private user information and be used to
impersonate users. To mitigate these attacks, RuleKeeper
uses session cookies set with the Secure and HttpOnly
flags [63], which ensures the cookie is only sent in
an encrypted request and makes the cookie inaccessible
to unintended client-side APIs, respectively. To prevent
session fixation attacks [64], RuleKeeper regenerates and
resends the session cookies everytime a user authenticates.

9. Related Work

General studies on privacy and GDPR. Previous work [19,
65–67] examined concerns of end-users and developers
on the security and privacy of applications. Recent stud-
ies [59, 68–70] focus on the tension between GDPR require-
ments and practices of modern computing systems. Shastri
et al. [68] discuss current avoidable practices that collide
with the GDPR. Shah et al. [70] illustrate the challenges
of retrofitting existing storage systems into compliance.
Experimental studies [18, 21–23, 71–73] investigate best
practices and limitations in GDPR compliance. There are
also relevant DSLs for privacy systems [74–76], but provide
abstractions that do not easily map to our problem domain.
Policy enforcement for database-backed applications.
Some systems track information flows by modifying the
compiler and runtime for a managed language [77–80]
or across the application/database boundary [15, 81–83].
Other IFC approaches [16, 84] enforce data-dependent se-
curity policies at compile-time only, being unable to per-
form dynamic access controls. Riverbed [13] is a prac-
tical IFC system enforcing user-defined policies that re-
strict the data online services can share with third parties.
However, Riverbed’s usage scenario is different from ours,
lacking support for global policies and requiring the de-
ployment of trusted hardware. The database community has
explored fine-grained access-control techniques based on
query rewriting [11, 12, 85, 86]. However, their fundamental
limitation is the lack of application-specific context which
precludes the ability to manage user consent preferences.
Privacy policy generation and auditing. Compliance anal-
ysis systems have been proposed to i) identify discrepan-
cies between privacy policies and actual code functional-
ity [58, 87, 88] and ii) aid developers write privacy policies
for applications [17, 89]. Some systems are specific for
mobile applications [17, 58, 87–90]. PrivGuard [14] em-
ploys static analysis and trusted execution environments for
validating compliance of Python programs with regulations
such as the GDPR. However, this system was designed for
different goals than ours, proposing a specialized solution
for data analytics and machine learning workloads that is
unsuitable for typical web development.

10. Conclusions

This work presents RuleKeeper, a GDPR-aware policy
compliance system for full-stack web development frame-
works. It includes a policy specification language and em-
ploys static and dynamic analysis to enforce policy com-
pliance, and was implemented for the MERN web stack.
RuleKeeper can prevent various GDPR compliance viola-
tions, while registering acceptable performance overheads.
As for future work, we intend to i) extend the verified GDPR
guidelines, ii) improve the accuracy of static analysis, iii)
optimize the performance, e.g., through query rewriting, and
iv) incorporate a complementary accountability infrastruc-
ture for tracking both the offline phase (e.g., cryptographic
code signatures) and the online phase (e.g., security logs).
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Appendix A.
Case Studies

This section presents complementary information on the case
studies presented in Section 5. Pertaining to the LEB use case,
we analyzed its internal processes that manage personal data:
pre-analytic is responsible for patient registration and specimen
processing, analytic for specimen analysis and validation, post-
analytic for preparing and emitting the analysis results, and human
resources for hiring and training new employees. APAC [45]
assigned the purpose “clinical analysis” to the clinical processes,
and “human resources” to the human resources process. Given
the extent of these internal processes and the fact that most of
them process the same data, our prototype focuses on the pre-
analytic process, responsible for patient registration and specimen
processing. Figure 12 details LEB’s pre-analytic process, where
decision blocks are represented in yellow, process blocks are
represented in blue and terminal blocks in orange. As we wanted to
extend this prototype with RuleKeeper, we focused on actions that
involve the patients’ personal data processing. Table 6 describes the
seven controllers that we implemented as part of LEB’s intranet
service for supporting the pre-analytic process of the laboratory.

Analytic
Process

Specimen
inspection.

Patient

Has medical
requisition?

Filling out the
analysis form.

Medical
requisition
verification.

Inform the patient of
the price and time
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OK?
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Specimens 
OK?

Fault report
and patient
notification.
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Yes No

Yes
Yes

No

No

No
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Figure 12: Flowchart of LEB’s pre-analytic process.

Controller Description
Register patient Receptionists register new patients in the system.

Access patient Receptionists fetch patients’ data. Patients fetch
their own data.

Access several
patients

Receptionists fetch data from patients to query
some parameters, such as checking appointments.

Update patient Receptionists update patient’s data. A patient can
update some aspects of its own data.

Register user System administrators register users in the system.
Delete user System administrators delete users in the system.
Update user System administrators update users in the system.

Table 6: Controllers in the LEB prototype intranet service.

Given that our other case studies are based on legacy applica-
tions, we studied their source code to detect their operations. For
the Amazona and Blog use case, we considered all the operations.
Habitica’s API comprises over 200 routes, so, we considered the
operations that we considered most relevant, grouped by category,
as described in Table 7.

Category Operations
Users Register user, get user’s profile, get user’s rewards
Tasks Create a new task , get user’s tasks, score a task

Groups Create a new group, invite member to group, join
group

Challenges Create a new challenge, join challenge, select winner
Quests Invite users to a quest, accept a pending quest
Halls Get all heroes (contributors), update hero (any user)
News Get latest news, create a new news post

Coupons Get coupons, redeem a coupon

Table 7: Habitica’s controllers.

const express = require('express');
const mongoose = require('mongoose');
const flatten = require('flat');

const patientRouter = express.Router();
const Patient = mongoose.model('patients');
// (...)

/* Update patient data. */
patientRouter.post('/patients/:patientId', function (req, res) {
const { patientId } = req.params;
let data = req.body; // data contains the colums to return

if (data) data = flatten(data);
const patient = { citizencard: patientId };
Patient.findOneAndUpdate(patient, data, ...);

});

Figure 13: Code snippet of LEB application for which static
analysis fails to detect columns being updated.

Appendix B.
Illustration of Static Analysis Limitations

In Section 6, we show that our static analysis engine fails to
correctly detect one endpoint-model (EM) pair from the LEB use
case and three EMs for the Blog use case. At their root cause, lies
the same limitation. Listing 13 shows the code snippet relative to
the missed LEB EM pair.

Our static analysis detects the registration of the endpoint POST
/patients/:patientId and the use of the findOneAndUpdate
function being called on the Patient model, which corresponds
to the patients table in the database. However, it cannot detect the
specific parameters that are being updated, which correspond to the
properties of the data object. The properties of the data object can
only be known at runtime, as they depend on the user input sent via
the body of the request object (req). From our experience, sending
input objects directly to a database statement, such as create or
findOneAndUpdate, is very uncommon and a security bad practice.
Typically, EM pairs resemble the code shown in Listing 14, where
a new object is created (user), whose properties depend on data
from the input (req.body).

In this example, the static analysis approach can detect the
properties of the user object, given as a parameter of the create
Mongoose function, and the structure of this object does not change
for different inputs. To handle the lack of knowledge of the object
properties, we consider that all data fields (as described in the data
model) are being accessed, which can lead to false positives – only
known at runtime. This strengthens the need for a second line of
defense for preventing GDPR violations, at runtime.



No. GDPR article Property Support
5.1 b) PURPOSE LIMITATION Data must be collected and used for specific purposes.  
5.1 c) DATA MINIMIZATION Data must be necessary to the purposes for which it is processed.  
5.1 e) STORAGE LIMITATION Data should not be stored beyond its purpose. #

5.1 a); 6 LAWFULNESS OF PROCESSING Each purpose must have a valid lawful reason to process the personal data.  
5.1 a); 12;

13; 14
TRANSPARENCY &
INFORMATION TO BE PROVIDED

The data subject should be made aware that its personal data is being
collected and to what extent it is or will be processed. G#

5.1 d) ACCURACY PRESERVATION Data must be accurate and kept up to date. #
5.1 d);

30; 33; 34 ACCOUNTABILITY Controller must be able to demonstrate compliance. #

32 SECURITY OF PROCESSING The controller must implement appropriate data security measures. G#

Table 8: Key GDPR articles.  indicates that RuleKeeper supports full compliance, # that it does not.

const express = require('express');
const mongoose = require('mongoose');

const userRouter = express.Router();
const User = mongoose.model('users');
// (...)

/* Create user. */
userRouter.post('/users/register', function (req, res) {
const user = {
username: req.body.username,
password: hash(req.body.password)

};
User.create(user, ...);

});

Figure 14: Code snippet of a typical EM pair example.

Appendix C.
Summary of GDPR Guidelines

Some GDPR regulation principles lie in grey areas, and are
not natively supported in information systems, raising a lot of
challenges for organizations who want to be compliant with the
regulation. This challenge has been addressed by several stud-
ies [18, 68, 69, 91, 92], which discuss the implications of GDPR
compliance in information systems Table 8 summarizes the relevant
key requirements that we have identified by extensively analyzing
the articles of the GDPR and the existing studies. For each property,
the table indicates the GDPR articles that support it, a brief
summary of the requirement, and RuleKeeper’s support for GDPR-
compliance, where  indicates that RuleKeeper supports full com-
pliance and # indicates that it does not. As originally intended,
RuleKeeper fully supports purpose limitation, data minimization,
and lawfulness of processing properties.

Appendix D.
RuleKeeper’s DSL specification

Table 9 presents the specification of RuleKeeper’s domain-
specific language. This DSL is used by web developers to write the
GDPR manifest that specifies the personal data types and purposes
for which the web application can process the data. An example
of an instance of this DSL for the Webus use case is presented in
Section 3.1.

D.1. Illustration of an inconsistency between the
GDPR manifest and the application

RuleKeeper’s static code analysis pipeline helps to look for
inconsistencies between the application code and the GDPR man-
ifest, as described in Section 3.2. In this section, we present an

Statement Rule

DATA-ITEMS-DECL DATA-ITEMS: list(<string>)

OPERATIONS-DECL OPERATIONS: list(<string>)

PERSONAL-DATA-
DECL

PERSONAL-DATA: list(<string>)

PURPOSES-DECL PURPOSES: list(<string>)

ROLES-DECL ROLES: list(<string>)

PREAMBLE
<data-items-decl> <operations-decl>
<personal-data-decl> <purposes-decl>
<roles-decl>

DATA-COLLECTION-
CLAUSE

list(<string>) ARE COLLECTED FOR <string>
purposes

DATA-COLLECTION-
DECL

DATA-COLLECTION: list(<data-collection-clause>)

LAWFULNESS-
CLAUSE

PURPOSE <string> HAS LAWFULNESS BASE <string>

LAWFULNESS-
BASE-DECL

LAWFULNESS-BASE: list(<lawfulness-clause>)

EXECUTED-FOR-
CLAUSE

list(<string>) ARE EXECUTED FOR <string>
purposes

EXECUTED-FOR-
DECL

EXECUTED-FOR: list(<executed-for-clause>)

DATA-MAPPING-
CLAUSE

<string> IS IN COLUMN <string> OF TABLE
<string>

DATA-MAPPING-
DECL

DATA-MAPPING: list(<data-mapping-clause>)

OPERATION-
MAPPING-CLAUSE

<string> IS MAPPED TO ENDPOINT <string>

OPERATION-
MAPPING-DECL

OPERATION-MAPPING:
list(<operation-mapping-clause>)

DATA-OWNERSHIP-
CLAUSE

OWNER IN TABLE <string> IS IN COLUMN <string>

DATA-OWNERSHIP-
DECL

DATA-OWNERSHIP: list(<data-ownership-clause>)

AUTHORIZED-
ROLES-CLAUSE

ROLE <string> IS AUTHORIZED TO list(<string>)

AUTHORIZED-
ROLES-DECL

AUTHORIZED-ROLES:
list(<authorized-roles-clause>)

PROGRAM

<preamble> <data-collection-decl>
<lawfulness-base-decl> <executed-for-decl>
<data-mapping-decl> <operation-mapping-decl>
<data-ownership-decl> <authorized-roles-decl>

Table 9: RuleKeeper’s DSL specification.

example of inconsistency for the Webus use case, where data is
processed for incompatible purposes, similar to the one presented
to the participants in the debugging task of the usability study (see
Section 7). Listing 15 replicates the code snippet of the “subscribe
to newsletter” operation presented in Section 2.2. This operation



function subscribe(req, res) {
const { e_mail } = req.body;

connection.query(`INSERT INTO newsletters (e_mail) VALUES
('${e_mail}')`, (err) => {↪→

connection.query("SELECT * FROM tickets WHERE e_mail = '${e_mail}'
AND year(date)>=2021", (err, tickets) => {↪→

if (tickets.length >= 10) sendPromoCode(e_mail);
res.sendStatus(200); });

});
}

Figure 15: Code snippet of the Webus’ ”subscribe to newsletter”
operation.

DATA-ITEMS: ticket buyer email, ticket buyer credit card, email

OPERATIONS: buy ticket, subscribe to newsletter

PERSONAL-DATA: ticket buyer email, ticket buyer credit card, email

PURPOSES: ticket management, marketing

DATA-COLLECTION:

ticket buyer email, ticket buyer credit card ARE COLLECTED FOR

ticket management purposes↪→

email IS COLLECTED FOR marketing purposes

EXECUTED-FOR:

buy ticket, see purchase history ARE EXECUTED FOR ticket

management purposes↪→

subscribe to newsletter IS EXECUTED FOR marketing

DATA-MAPPING:

ticket buyer email IS IN COLUMN name OF TABLE tickets.

ticket buyer credit card IS IN COLUMN credit_card OF TABLE

tickets.↪→

email IS IN COLUMN e_mail OF TABLE newsletter.

OPERATION-MAPPING:

buy ticket IS MAPPED TO ENDPOINT POST /buy_ticket.

subscribe to newsletter IS MAPPED TO ENDPOINT POST /subscribe.

Figure 16: Simplified version of RuleKeeper’s policy for Webus.

comprises two steps: (i) insert the user’s email in the Newsletter
table, and (ii) send a promotional code to frequent travelers (⩾
10 trips in 2021). To check if a user is a frequent traveler, step
ii accesses the Ticket table, which contains the user’s email and
credit card. Figure 16 shows a simplified version of the Webus
policy presented in Section 3.1.
Data processed for incompatible purposes: The EXECUTED-FOR
rule specifies that the “subscribe to newsletter” operation is exe-
cuted for marketing purposes, which is only allowed to process
the users’ email, as per defined in the DATA-COLLECTION rule.
However, step ii accesses the users’ email and credit card, which
are only allowed to be processed for ticket management purposes.
In this case, RuleKeeper’s static analysis will detect a purpose
limitation inconsistency, where the application is processing more
personal data for a given purpose than what is advertised by the
GDPR manifest.
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