
Storekeeper: A Security-Enhanced Cloud Storage Aggregation Service

Sancha Pereira, André Alves, Nuno Santos, Ricardo Chaves
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal
Email: {sancha.pereira,andre.pimenta.alves,nuno.m.santos,ricardo.chaves}@tecnico.ulisboa.pt

Abstract—Cloud storage services are currently a commodity
that allows users to store data persistently, access the data from
everywhere, and share it with friends or co-workers. However,
due to the proliferation of cloud storage accounts and lack of
interoperability between cloud services, managing and sharing
cloud-hosted files is a nightmare for many users. To address
this problem, specialized cloud aggregator systems emerged
that provide users a global view of all files in their accounts
and enable file sharing between users from different clouds.
Such systems, however, have limited security: not only they
fail to provide end-to-end privacy from cloud providers, but
they require users to grant full access privileges to individual
cloud storage accounts. In this paper, we present Storekeeper,
a privacy-preserving cloud aggregation service that enables file
sharing on multi-user multi-cloud storage platforms while pre-
serving data confidentiality from cloud providers and from the
cloud aggregator service. To provide this property, Storekeeper
decentralizes most of the cloud aggregation logic to the client
side enabling security sensitive functions to be performed only
on the trusted client endpoints. This decentralization brings
new challenges related with file update propagation, access
control, user authentication, and key management that are
addressed by Storekeeper. This is provided at a low cost (7% on
average) when compared with the underlining cloud providers.

I. INTRODUCTION

Over the past years, cloud storage has become an invalu-
able resource for consumers. For many users, cloud services
such as Dropbox, Google Drive, or Microsoft OneDrive con-
stitute essential platforms for storing personal documents,
photos, videos, etc., and for sharing such files with friends.
Moreover, driven by the fact that many companies have
limited storage resources, personal cloud accounts tend to be
adopted also for professional purposes, e.g. to store work-
related files, collaborate with co-workers, or back up data.

However, in the current state-of-affairs, managing and
sharing cloud-hosted files can be very cumbersome for users.
To save costs, many users use only the amount of free space
provided by default per cloud storage account. Since this
space is relatively small (tens of gigabytes), in order to ac-
commodate growing storage demands, users end up signing
up for multiple cloud accounts in different cloud providers
(e.g., Dropbox and Google Drive) or even within the same
service under a different username. As a result, users’ files
tend to become scattered across multiple accounts, making
file maintenance and navigation quite involved.

Moreover, given the lack of interoperability between cloud
services, sharing files between cloud providers is not directly
permitted. For example, a Dropbox user is not allowed to
share a file and edit it jointly with a Google Drive user. This
limitation is particularly troublesome whenever collaboration
is required between co-workers, friends, or family members.
As a result, users tend to create cloud accounts on the same
cloud service so that they can access common files using the
internal file sharing mechanisms of the service. Therefore,
even the users that can afford to pay for larger storage
space are normally forced to maintain multiple accounts for
collaboration purposes.

To address this file management hurdle, a few services
have recently emerged to enable cloud storage aggregation.
Cloudfogger [1] and Odrive [2], for example, implement
a multi-user multi-cloud file sharing layer which exposes
to the users a unified view of all files located in their
individual accounts and enables seamless file sharing across
cloud accounts, for example between a Google Drive user
and a Dropbox user. However, existing cloud aggregators
fail to provide satisfactory security. Although systems like
Cloudfogger provide end-to-end file encryption at the client
side, in all these systems the cloud aggregator has full access
to users’ cloud storage accounts. Such privileges are required
so that the cloud aggregator can push file updates to cloud-
backed storage. As a result, users incur security risks by
entrusting access credentials of their cloud storage accounts
to the cloud aggregator.

In spite of extensive research on cloud storage security,
the problem of enabling secure cloud storage aggregation
has been overlooked. Systems like BlueSky [3] focus on
securing single-user single-cloud platforms, i.e., a single
user account located on a single cloud service. Security
is normally achieved by interposing an encryption layer
between the user’s client and the cloud provider. SPORC [4]
focuses also on a single cloud service, but allow for se-
cure file sharing between users (i.e., multi-user single-cloud
platforms). Multiple clouds are handled by systems such as
DepSky [5] and SCFS [6]. Such systems combine multiple
clouds into a conceptually unique cloud called cloud-of-
clouds (CoC) in order to maintain replicated file copies
within a single administrative domain. A CoC can be used by
a single user (or by a set of users) to maintain multiple file
replicas in different cloud backends as if it were a single



cloud; users are oblivious to the actual file locations. In
contrast, in cloud storage aggregators, users do not share
a common set of cloud accounts. Instead, each user must
always retain the control over its own pool of cloud accounts
which means that, as opposed to CoC systems, it is necessary
to securely support file sharing across independent cloud-
backed stores managed by different users.

This paper presents the design, implementation, and eval-
uation of Storekeeper, a distributed system that provides
a secure cloud aggregation service for multi-user multi-
cloud storage platforms. Storekeeper comprises a client
application (akin to a Dropbox client) to be installed on the
users’ computers and a centralized cloud aggregator server.
Storekeeper users sign up to the server through the client
and register their individual cloud storage accounts from
Dropbox or Google Drive. Through a unified file namespace,
users can seamlessly browse files across different cloud
accounts and share files with other users.

A key technical contribution of Storekeeper is its novel
design, which provides end-to-end data confidentiality with-
out entrusting sensitive user account credentials to the cloud
aggregator server. The security-sensitive logic is displaced to
the clients’ trusted endpoints so that the server has no writing
privileges on any of the users’ cloud service accounts.

When compared with a typical centralized cloud ag-
gregator, Storekeeper’s decentralized architecture introduces
new challenges, stemming mostly from the lack of inter-
operability and heterogeneity of cloud services. Storekeeper
includes mechanisms to handle user identities from different
cloud providers, and provide key management and storage
solutions that are easy to use by the users. Secondly, our
system includes adequate security model and enforcement
mechanisms that masks the diversity of file permission
models across cloud providers. Thirdly, Storekeeper enables
secure read and write operations to shared files located in
different cloud accounts. To this end, Storekeeper incorpo-
rates techniques to securely propagate file updates without
introducing privilege escalation vulnerabilities against po-
tentially malicious users.

From the performed evaluation, we found that Storekeeper
adds little performance overheads (6 to 10%), which are
mostly due to inevitable system interactions or file encryp-
tion operations. We envision Storekeeper’s cloud aggregator
to be deployed internally by companies in order to enable
file sharing between their employees without considerable
investment.

II. DESIGN

A. Goals, Threat Model, and Design Principles

Goals: Our central goal is to design a secure cloud storage
aggregation service. A user is expected to register pre-
existing cloud accounts in the service, and the service will
provide a unified view of the user’s files stored in those

cloud accounts. A user must be allowed to share files with
other Storekeeper users, and possibly revoke access to them
in the future. File sharing must not require that users have
individual accounts on the same cloud service. The aggre-
gation service must not require privileged access to users’
cloud accounts, and provide end-to-end data confidentiality.
Note that, in this work, we are not focusing on preserving
integrity or availability of files.

Threat model: We consider cloud providers to be potentially
malicious with respect to violation of data confidentiality,
but are required to provide data storage resources and enable
access to that same data. The cloud aggregator (and its
administrators) is assumed to be honest but curious, meaning
that it can passively listen to all exchanged messages and try
to learn sensitive information, but follow the system proto-
cols and do not launch active attacks. Note that we do not
prevent intentional modification of data or meta-data by the
cloud aggregator or cloud providers that may lead to service
unavailability or to lack of data integrity. Nevertheless, we
assume that the communication channels are insecure. They
can be actively eavesdropped or manipulated by external
malicious agents. We do not consider side-channel attacks or
social engineering attacks (e.g., to obtain users’ passwords),
and assume that cryptographic algorithms are sound.

Design principles: We follow three main design principles:
P1 and P2 ensure cloud space isolation between users; P3
preserves usability.
P1: Users must be restricted to write on their accounts

only. By ensuring that users can only store content in
their own accounts, we prevent abuses from other users
willing to “free ride” on the cloud storage space owned
by other users.

P2: Users must have their files physically located on their
accounts. In a cloud storage aggregation system, cloud
accounts must be managed independently per user.
Therefore, it is important to ensure that users keep
control of their files, even if they share it with others.

P3: Users must not need to maintain persistent state at the
client side. By keeping all persistent state on the server
side, the service will be more convenient for users and
more robust to data loss than if the user is required, for
example, to manage private keys.

B. System Overview

This section presents an overview of Storekeeper, a
security-enhanced cloud storage aggregator that follows the
design principles stated above. Storekeeper consists of two
main components: a client application and the Storekeeper
Directory Server (SDS). The client is an application that
runs on the users’ devices and serves as an interface to
the system. Similarly to the Dropbox client application, the
Storekeeper client maintains a local cache of the user files
persistently stored on cloud-backed stores. Stores represent



Alice account 1

Alice account 2

Bob account 1

Storekeeper
Directory Server 

(SDS)

Hosting Company

Alice’s laptop

Storekeeper
Client

Cache

Bob’s desktop

Storekeeper
Client

Cache

SDS
Administrator

Cloud-backed Stores

Figure 1. System overview.

cloud accounts hosted by cloud services such as Dropbox
or Google Drive. These cloud accounts are provided by the
user. The SDS is the heart of Storekeeper. This component
runs on a dedicated server and manages the meta-data
associated with users, files, and stores. Files themselves are
not stored in the SDS, but on stores provided by users.

Figure 1 illustrates the architecture of the system using
a simple deployment scenario. Alice and Bob are faculty
members of a university, which runs Storekeeper in its
premises in order to foster internal collaboration. A ded-
icated administrator is responsible for managing the SDS
server and registering users in the system. Alice and Bob
can log into the system using a username and a secret
password, and register their personal cloud accounts. In this
usage scenario, Alice has two accounts in Dropbox and Bob
has one account in Google Drive. Storekeeper will interpret
them as stores allowing Alice to see a unified view of files
in accounts 1 and 2, and Bob to see all files from account 1.
This unified view, seen by each user, is named workspace.
Each user can thus share files with each other, independently
of whether or not they have accounts on the same cloud
provider. Access to cloud stores is performed at the client
side only, ensuring that users retain exclusive control of their
accounts. Files are encrypted at the client endpoint.

C. A Global File Namespace

We now describe the design of Storekeeper in more detail
starting with its file namespace. In a cloud aggregator service
like Storekeeper, it is necessary to define how files physically
dispersed across various cloud-backed stores are presented
to the user under a uniform file naming scheme. Figure 2
helps illustrate the file naming organization of Storekeeper
considering the usage scenario introduced in Section II-B.
It represents (1) aggregated cloud files (workspace) seen by
Alice and Bob mounted on the local filesystem, on the left,
(2) the actual location of these files on the users’ cloud
accounts (stores) on the right, and (3) mapping between

/sds.uni.edu	  
	  	  /data	  
	  	  	  	  /6385f212-‐ead1-‐11e5-‐9ce9-‐5e5517507c66	  
	  	  	  	  /1622c28e-‐b5ff-‐411e-‐aef2-‐331fadf61a70	  
	  	  /staged	  

Alice account 1

/sds.uni.edu	  
	  	  /data	  
	  	  	  	  /733a497e-‐59a7-‐443e-‐97ee-‐caa481027afb	  
	  	  /staged	  

Alice account 2

/sds.uni.edu	  
	  	  /data	  
	  	  	  	  /c1b2e97c-‐e4aa-‐40e8-‐99d5-‐aaf82014ef6b	  
	  	  	  	  /8b54e0f5-‐e3c8-‐4160-‐af6d-‐d8e018cdeba6	  
	  	  /staged	  

Bob account 1

/sds.uni.edu	  	  	  	  	  
	  	  /file1.doc	  
	  	  /file2.doc	  
	  	  /file3.doc	  

Alice workspace

/sds.uni.edu	  
	  	  /file3.doc	  
	  	  /img1.jpg	  
	  	  /img2.jpg	  

Bob workspace

Figure 2. File name mapping in Storekeeper.

workspace file names and file locations, represented by the
arrows.

Since there can be multiple independent instances of the
Storekeeper service, every SDS server defines a unique
domain name to avoid name collision. The domain name
is set up by the SDS administrator and may correspond to
the DNS name of the SDS server (e.g., sds.uni.edu). The
Storekeeper domain name will give the name to both (1)
a root folder on the user’s workspace under which the user
files of that domain will be mounted, and (2) a root folder on
each cloud store in which user files and pending updates are
persistently saved. Files in the cloud stores are given globally
unique file identifiers (FIDs) and accessible to clients via a
service-dependent URL (the arrows in Figure 2). If a file is
shared with a user whose workspace contains a file with a
similar name, Storekeeper resolves this naming conflict by
adding the prefix “shared-” to the shared file.

D. Securing User Credentials

Storekeeper depends on specific user credentials that must
be properly secured: access tokens and user keys.

a. Access tokens: In order to access a cloud store through
the respective API, a typical third-party application (in-
cluding the Storekeeper client) needs to authenticate itself
towards the cloud service by providing a specific credential
named access token (AT ). Access tokens preclude the need
for the user to interactively input username and password.
Since access tokens allow for unrestricted access to users’
stores, Storekeeper needs to maintain them securely.

b. User keys: To provide end-to-end confidentiality, files
must be encrypted at the client side with a symmetric key
– a file encryption key (KF ) – before storing them on the
cloud. For this, a symmetric file encryption key (KF ) is
used, as further discussed in Sections II-G and II-H. The
considered approach to protect this key, while assuring that
the file owner alone can access it, is to use a public-key
pair that represents a user key (KU ) and use this key to



encrypt KF (KFKU+ ) (or actually the read key (KR), as
discussed in Section II-H). By ensuring that the user’s private
key (KU−) remains private, access to KF is restricted.

To avoid burdening the user with the responsibility to
maintain user credentials, Storekeeper allows to store access
tokens and user key in encrypted form using a symmetric
access key (KA). Encrypted credentials are stored at the
SDS as a tuple that contains: username u, encrypted user’s
private key, and list of encrypted access tokens ATs, one for
each store s (from 0 to n) that the user has registered in the
server, resulting in:

u, {u,KU−}KA, [{u,ATs0}KA, ..., {u,ATsn}KA]

To properly protect these credentials, KA must be a
cryptographically secure password (or key) and known only
to the user. Access tokens are encrypted and sent to the
SDS whenever the user adds a new cloud store. For added
security, the user may store this tuple at another location of
his choice. To access these credentials, the user must first
authenticate himself towards the SDS by having username
and password established with the SDS for a secure login.
With this method, users only need to know (i.e. memorize)
username, login password, and access password (or key).

E. Consistency Semantics

To ensure that users retain control of their files (principle
P2), files have a fixed location on a cloud store that belongs
to the owner of the file. We name home store the cloud store
where a given file is located. As writes are performed to
clients’ local file copies, inconsistencies may arise between
local copies and the primary replica in home store.

To resolve inconsistencies, we adopt eventual consistency.
Eventual consistency favours file availability and is already
familiar to users, being adopted by Dropbox, Google Drive,
and other cloud services. To implement eventual consistency,
each file has a home version number (vh) which is centrally
tracked by the SDS. For each local replica, the client
keeps track of (1) a file’s local version number (vl), which
corresponds to vh of the downloaded version, and (2) a dirty
flag, which is set to 1 if the user modifies the file. Local file
modifications are put in a queue to be propagated to the
SDS. Periodically, clients synchronize the local cache with
home stores. In case of a write conflict, the local file copy
is put in quarantine in a special directory to be manually
resolved by the user, such as in Dropbox and other cloud
services. From a user’s perspective, Storekeeper implements
a read-your-own-writes, i.e., local writes performed by the
user are visible by local reads.

F. Access Permissions

Existing cloud storage services allow file sharing, but
normally implement different access permission restrictions
for internal and for external users: internal users have local
accounts in the cloud service, external users have not.

Operation R-Permission W-Permission S-Permission
read yes yes yes
create no yes yes
update no yes yes
delete no yes yes
chperm no no yes

Table I
STOREKEEPER’S ACCESS CONTROL MATRIX.

External users have access to files via URL and tend to have
less privileges than internal users. For example, in Dropbox
and Google Docs, external users can access individual files
or directories with read permissions only; writes are not
allowed. Specificities in access permission semantics can
also be observed across cloud services. In Dropbox, for
instance, internal users can share files with read permissions,
but write permissions can be granted to directories only.
Google Drive, on the other hand, allows internal users to
share files or directories in both read-only or write modes.
In Storekeeper, we need to accommodate this heterogeneity.
Since directories can be seen as special files, we focus
primarily on file access permissions.

In Storekeeper, every file has a file owner. The file
owner has full access privileges over a file, which include:
read, write (i.e., modify or delete), and changing access
permissions. Modifying access permissions entails granting
or revoking access privileges to a certain Storekeeper user –
the grantee. A grantee can be given one of three access
permissions: read (R), write (W), and share (S). These
permissions are cumulative: R allows a grantee to read a
file, W allows to read and write a file (i.e., modify or
delete it), and S allows to read, write, and share a file
with other users. Note, however, that the privileges of a
file owner can never be restricted. Internally, Storekeeper
will use ACLs to enforce these permissions and mask the
underlying mechanisms of each cloud service.

Table I shows, on each row, the file operations sup-
ported by Storekeeper and the respective authorization re-
sult yielded to a grantee based on his access permissions
(columns 2-4). File read operations are allowed under R,
W, or S permissions. Creating, updating, or deleting a
file are permitted with W or S permissions. Changing file
permissions (chperm) is allowed with S permission only.
Next sections present the algorithms for file operations.

G. Basic Algorithm for File Operations

To describe the Storekeeper file operations, we start
by presenting a simple algorithm that illustrates the basic
workings of read and write operations and then revisit it
in the next sections to address emerging challenges. Read
and write operations are the most fundamental ones. For
simplicity, consider that write operations comprise: create,
update, and delete (see Table I). To guide our explanation,
we take the use case depicted in Figure 2 in which Alice
and Bob are Storekeeper users in domain sds.uni.edu and



share file file3.doc (f ). Alice is the owner of this file and
Bob has W privileges (i.e., he can read and write the file).

Our goal is to allow Alice and Bob to read / write file f
while providing end-to-end data confidentiality. To achieve
this property, when Alice creates the file, the local client
must first encrypt the file with a file key (KF ) and then
uploads the resulting ciphertext to the file’s home store. The
file key is randomly generated and is specific to that file. To
protect the file key, the client encrypts KF with the public
part of Alice’s user key (KU+

A ) and send it to the SDS.
To read the file in the future, Alice’s client downloads the
encrypted file from the home store, and fetches from the SDS
the encrypted credentials: KF and private part of Alice’s
user key (KU−A ). Next, based on the access key (KA),
decrypts KU−A , which in turn uses to decrypt the file key
KF . From KF , the client decrypts the file contents. Writes
can be performed by re-encrypting the new file version with
KF and uploading it onto the home store. Since both file
and file keys are encrypted, neither SDS nor cloud provider
can read the file contents.

To allow Bob to read or write the file, the file key
KF can be securely shared with Bob, which can be done
by encrypting KF with the public part of Bob’s user
key (KU+

B ). When Alice, the owner of the file, grants W
permissions to Bob, the SDS not only updates the file’s ACL
with W, but also receives from Alice’s client a file access
credential: {KF}KU+

B
. When Bob reads / writes this file,

the SDS forwards this credential to Bob’s client, allowing
KF to be decrypted and the operation to proceed.

H. Permission Enforcement and Revocation

Permission enforcement is based on a combination of ac-
cess control checks performed at the SDS and cryptographic
protocols. Considering the basic scenario described in the
section above, the SDS data structures that control access to
file f (file3.doc) can be represented by the tuple Pf0 :

Pf0 : (alice, {KF}KU+
A
), [(bob,W, {KF}KU+

B
)]

Pf0 implements an ACL in which Alice is the owner of
the file, and Bob has writing privileges to the file. In order to
decrypt the file for read operations and re-encrypt the file for
writes, the file key KF is encrypted with the public part of
their respective user keys (see Section II-D). Pf0 is verified
every time a user performs a file operation to f ; without
adequate permissions, the operation is refused by the SDS.
Nevertheless, even if the SDS accidentally sends a file to a
wrong user, that user will not be able to decrypt it to read.

However, this simple approach is insecure when revoking
reading privileges. Since Bob holds KF and file URL, it
will still be possible to download and decrypt the file after
Bob is excluded from the ACL. A commonly used approach
to handle revocation is to re-encrypt the file whenever the
revocation operation takes place using a new file key. The

downside of this approach is the performance overhead
introduced by re-encryption.

To avoid file re-encryption, we employ three techniques,
enumerated below. To illustrate each step, we show the new
tuple state when: both Alice and Bob belong to the readset
(P ′f1 ), Bob’s permissions were revoked (P ′′f1 ), and Alice
submits new update (P ′′′f1 ). Changes are underlined.

a. Readers have access to a read key: Instead of granting
readers direct access to the file key KF , they are given
access to an intermediate symmetric key that is shared
between authorized readers. This key – named read key
(KR) – is then encrypted with the readers’ public key and
added into the ACL. The read key is then used for encrypting
the file key KF , which effectively encrypts the file contents.

P ′f1 : {KF}KR, (alice, {KR}KU+
A
), [(bob,W, {KR}KU+

B
)]

b. Revocation generates a new read key: Every time
revocation occurs, a new read key KR′ is generated and the
ACL updated such that the new read set has access to the
new read key. This means that KR′ must be encrypted with
the readers’ public keys and the ACL updated accordingly.

P ′′f1 : {KF}KR′ , (alice, {KR′}KU+
A
), []

c. Every write generates new file key: Every time a writer
submits a file update, instead of encrypting the file with the
same file key KF , the writer generates a new file key KF ′,
encrypts the file with KF ′, and replaces the old KF with
the new KF ′, which must be encrypted with the read key
so that readers can continue reading the file.

P ′′′f1 : {KF ′}KR′ , (alice, {KR′}KU+
A
), []

With this method, a revoked reader will not be able to see
any future writes, since the file key and read key will become
inaccessible to the revoked user. As a result, revocation is
achieved without re-encrypting the file.

I. Staging Space

The basic algorithm described in Section II-G skips
another important question which is how to enable clients
to retrieve or update files homed on cloud stores of other
users. As mentioned previously (Section II-F), existing cloud
services put important restrictions in the way files can be
shared. For example, external users are allowed to read files
via a URL, but cannot perform writes to such files. In some
other cases, internal users are restricted to sharing directories
in write-mode, not single files. Our goal is therefore to
provide transparent interoperability between cloud stores
such that files can be seamlessly shared at a file-level
granularity while ensuring isolation between user accounts.

To achieve this goal, our approach is to entirely pre-
vent direct cross-writes, i.e., writes on other users’ stores;
only cross-reads will be allowed. Figure 3 illustrates these
concepts for a simple scenario. Bob’s client will be able



file3.doc	  

Alice client Bob client

Alice Account 2

Data Folder

Staged Folder

Bob Account 1

Data Folder

file3.doc’	  

Staged Folder

1. 
Write

2. 
Read

3. 
Write

4. 
Read

Figure 3. Example scenario to illustrate the use of the staging space. Read
/ write operations are represented in dashed / solid lines. First, Alice client
writes the file in her account (1). Then, Bob fetches the file from the file’s
home account using a read-only URL (2). Bob updates the file and places
the file temporarily in the staging space (3). Finally, Alice retrieves the
updated file version from Bob’s staging space using a read-only URL (4).

to read Alice’s file based on an external URL. Whenever
Bob has pending writes, rather than submitting them to
Alice’s account via a direct URL, the new file version must
temporarily be placed in a reserved area which we call
staging space. Staging space is nothing but a dedicated
folder in Bob’s cloud stores where pending updates to
foreign files can be temporarily saved (see Figure 2). To
let Alice access the new file version, Bob’s staged file is set
to be readable and a corresponding read-only URL is given
to Alice so that the file can be pulled from Bob’s account.

With staging, however, a few negative side effects emerge:

a. Dangling pointers: A file is always expected to be found
via a URL. With staging, the URL must be updated to the
file’s new location: in Figure 3, after step 3 the file will
reside in Bob’s staging space. However, if Bob removes his
account from Storekeeper or deletes the staged file from his
account, the URL becomes invalid (a dangling pointer) and
the file inaccessible.

b. Lost updates: If Bob removes the cloud store, the file
updates performed by Bob will be lost because updates were
staged in a Bob’s store that is no longer available.

c. Free riding: File staging can also lead to situations of
potential abuse between users. For example, suppose that the
latest file version is hosted in Bob’s staged space. If Alice
revokes Bob’s permissions to access the file, Bob can no
longer access the file but the file will still be provisioned
by Bob. As a result, part of Bob’s storage space will be
consumed by someone else without bringing direct benefits
to Bob. Alice would be “free riding” on Bob’s storage space.

J. File Homing

To overcome the negative side effects of staging, Store-
keeper uses a technique which essentially consists of re-
locating staged files back to their home stores; we call it
file homing. Taking Figure 3 as example, file homing (a)
copies the file from Bob’s staged space back to Alice’s,
and (b) updates the file URL in the SDS to point to the
home store file version. Thus, if Bob’s cloud store becomes
inaccessible, file homing prevents dangling pointers and lost

updates because the file has been relocated to Alice’s store.
By the same reasoning, if Bob’s permissions are revoked,
free riding is prevented because the file is now served from
Alice’s own storage capacity.

However, there are practical challenges to implementing
this technique. File homing should ideally be executed by
the time Bob submits his file update. Since only Alice’s
client has write access to her accounts, chances are that
when Alice’s client triggers file homing, Bob’s store has
been removed from the system. As a result, the file URL in
SDS would be invalid (dangling pointer) and the submitted
update lost. To handle this we adopt three techniques:

a. Increase frequency of file homing events. To avoid con-
suming too many resources at the client, staging checks are
piggybacked in periodic interactions with the SDS that the
client already performs in two occasions: when refreshing
the local cache, and when submitting writes.

b. Serve stale version from home store. If the staged store
becomes available a (stale) home version can be returned
instead. Rather than maintaining a single file URL and
version number pair, the SDS will now maintain two pairs:
one for the home store and other for the staged store. If
the staged store is removed before file homing takes place,
the home version will be returned instead. This technique
does not entirely prevent lost updates, but limits them to the
updates submitted since the last file homing event.

c. Perform garbage collection. As a result of staging and
file homing, replicas will be left on staging directories,
taking up precious storage space. To claim such space,
Storekeeper has a simple garbage collection mechanism
which periodically deletes stale files from staging folders.

K. Scalability and Fault Tolerance

A potential bottleneck to the scalability of the system can
be caused by the centralized nature of Storekeeper’s SDS.
The throughput of the system in terms of number of requests
served per unit of time will be limited by the capacity of the
SDS server. Similarly, the maximum of users, cloud stores,
and files will be bound by the memory and disk available
on the server to store the meta-data state of the SDS.

As for fault tolerance, the SDS constitutes the most critical
component in the system. SDS failures may affect service
availability and data durability. To improve availability, it is
possible to deploy multiple SDS servers operating in master-
slave configuration so that a slave server can gracefully
replace a master server in case of failure. To assure SDS
meta-data durability (e.g., upon HW failures), replication can
be implemented using RAID, backups, or both.

III. IMPLEMENTATION

We implemented the Storekeeper system, which consists
of two components: the Storekeeper Daemon (SD) and the
Storekeeper Directory Server (SDS). The SD is a standalone



process running on the user’s device and is responsible
for the implementation of the client-side logic. Written in
Java, the SD provides an API to a local command line
tool that allows the user to input management commands to
Storekeeper (e.g., add a new account, login to the service,
etc.), and a periodic monitoring service that synchronizes the
local workspace with the cloud-backed stores. To interact
with the cloud stores, the SD uses service-specific API
libraries. Currently, the SD supports integration with two
cloud services: Dropbox (API version 1) and Google Drive
(API version 2). SD’s modular design allows for easy
support of additional cloud services.

The SDS is also implemented in Java and receives
commands from the SD. Communication between SD and
SDS takes place over SSL. By using SSL, we ensure that
the SDS is properly authenticated, which is important for
users to validate the identity of the Storekeeper domain
provider. SSL also provides integrity- and confidentiality-
protected message exchage capability between SD and SDS.
Over SSL channels, SD and SDS exchange protocol-specific
commands encoded in JSON. At the SDS side, persistence of
meta-data is achieved by serializing it into local XML files.
The SDS provides a command line interface that allows the
local administrator to manage users of the system. For space
constraints we omit further details about the SDS internal
data structures and distributed protocols.

To perform cryptographic operations, we used the Java
library provided by the JCA framework. We use AES cipher
and generate 256-bit symmetric encryption keys randomly.
For asymmetric encryption, we use 1024-bit RSA keys
randomly generated. SHA1 is used for hashing.

IV. EVALUATION

This section presents the performance evaluation of Store-
keeper. This evaluation was accomplished using micro-
benchmarks to measure the performance of each of its core
operations, namely: read, write, delete, file sharing, and
file access revocation. To illustrate the multi-cloud support
of Storekeeper, tests are also performed using two distinct
cloud providers and multiple accounts from each one.

A. Methodology

Experiments were performed using Amazon EC2 virtual
machines for hosting the SDS and clients. The SDS was
deployed on a standalone virtual machine. Each virtual
machine has a 1-core Intel Xeon Family 2.5 GHz machine
with 1GiB memory and 8 GiB SSD, and runs Ubuntu
Server 14.04 LTS. For the supporting cloud storage, we used
standard accounts from Google Drive and Dropbox.

To evaluate the impact of the data length in the data
dependent operations (read, write, and delete), metrics were
obtained for varying file sizes, particularly: 1KB, 10KB,
100KB, 1MB, 10MB, and 100MB. For operations whose

0

0.5

1

1.5

2

2.5

1 kB 10 kB 100 kB 1 MB 10 MB

T
im

e
 i
n

 s
e

c
o

n
d
s

File size

Download file from
cloud

Decrypt file with file
key

Decrypt file key

Decrypt file's read
key

Get file's metadata
from SDS

Figure 4. Read performance using GoogleDrive.

performance varies according to the amount of users shar-
ing a given file (file sharing and file access revocation),
experimental results were obtained for a variable amount
of users, varying between 1 and 100 users. These results
were obtained between 15th and 20th of April, 2016. The
presented figures illustrate the average value of the execution
of each micro-kernel 100 times. To depict their statistical
relevance the standard deviation is also depicted.

The following starts by illustrating the performance and
impact of the proposed solution for the supported opera-
tions considering Google Drive as the cloud provider. To
conclude, comparative results for Storekeeper using Google
Drive and Dropbox are presented. This will illustrate the per-
formance variations according to the provider, the operation,
and the file size.

B. Performance of Read

Typically, the most frequently used operation in this type
of systems is the file read operation. In Storekeeper, for each
file read, the total execution time (client side) can be broken
down into the time taken for each of the five sub-steps of the
read operation, particularly: (1) retrieve the file’s metadata
from the SDS; (2) using the users private key, to obtain the
file key; (3) obtain the file key using the deciphered read key;
(4) download the file from the cloud storage provider; and
finally (5) decipher the obtained file. Since the performance
of reads depends on the file size, time results were obtained
for different file sizes. Note that, files ≥ 100MB cannot be
directly read from Google Drive using the interface herein
considered. As such, these are herein not depicted.

From the results depicted on Figure 4, it can be seen
that, as expected, the larger the file the longer it takes
to download. However, this increase is not linear, since
the download of a 10MB file requires 2.2s (achieving a
throughput of 4.4MB/s) while for a 1kB file it requires
0,6s (achieving a throughput of 1.6kB/s). Meaning that the
download of 10MB files is 2800 times higher.

The Storekeeper system imposes a constant delay over-
head, caused by sub-steps (1), (2), and (3). The bulk of
the delay is imposed by the actual file download from the
cloud storage provider. As seen from these results, the file
decryption also imposes a varying delay in the operation,
but is between less than 0.1% to 3% of the total time, for



0

1

2

3

4

5

6

7

1 kB 10 kB 100 kB 1 MB 10 MB 100
MB

T
im

e
 i
n
 s

e
c
o
n
d
s

File size

Write file on cloud

Connect to cloud

Encrypt file data

Add SDS metadata

Encrypt read key

Encrypt file key

Get credentials
from SDS

Figure 5. File create performance using GoogleDrive.

1kB to 10MB files, respectively. Actually, apart from the
actual file decryption, the cost imposed by Storekeeper is
independent from the file size, requiring 50ms. Most of this
time is imposed by the reading of the meta data from the
SDS. In the worst case, namely for very small files such as
the 1kB file, the overhead imposed by the proposed system is
of 8%. For larger files, equal or above 100kB, this overhead
slightly reduces to 7%.

C. Performance of Write

The other common operation is file writing. In Store-
keeper, the write operation is used for both creating a new
file and updating an existing file.

Identically to reads, the write operation, in particular file
create, is divided into several sub-steps: (1) get credentials
from SDS, (2) encrypt the file key with the read key, (3)
encrypt the file with file key, (4) encrypt the read key with
the user’s public-key, (5) connect to cloud storage provider,
(6) upload the file to the cloud storage provider, and (7) add a
new file entry on SDS. Once more we start by analyzing the
performance of this operation, for files varying from 1kB to
100MB. The results for file creation are depicted in Figure 5.

Identically to the read operation, the write operation delay
depends on the file size. For smaller files, between 1kB and
10kB, the proportional overhead of Storekeeper is also in
the order of 7%, mostly imposed by the interaction with
the SDS. Each interaction with the SDS (step 1 and 7),
to complete the write operation, takes about 50ms, in a
total average time of 100ms. Identical results are obtained
for 1MB and 10MB files, but the encryption of the file
itself starts to become more significant with a cost between
0.5% to 3% (8.5ms and 63ms) , respectively of the total
operation time. For significantly larger files (100MB), the
cost of interacting with the SDS becomes negligible, but
the cost of encrypting the file becomes more relevant,
about 10% of the total operation time. Overall, for files
this big, the proposed solution imposes a cost of 10%,
caused mostly by the file encryption. For a 10MB, the write
operation requires 1.6s (achieving a throughput of 5.2MB/s)
when using Google Drive directly, against the 2s (4.8MB/s)
when using Storekeeper, thus being 8% slower when using
Storekeeper. When considering 1kB files, a write delay of

0

1

2

3

4

5

6

7

1 kB 10 kB 100 kB 1 MB 10 MB 100 MB

T
im

e
 i
n
 s

e
c
o
n
d

s

File size

Create file Update file

Figure 6. File create and update times in Google Drive.

Steps Values [ms] %
Get cloud credentials from SDS 48 5
Remove file’s metadata from SDS 50 5
Delete file locally 0,9 0,1
Connect to cloud 290 30
Delete file from cloud 560 59

Total 947 100

Table II
EXECUTION TIMES IN MILLISECONDS OF A DELETE OPERATION FOR A

1KB FILE STORED ON GOOGLE DRIVE.

1.5s is imposed against 1.4s when just using Google Drive,
being the proposed system 7% slower. This added delay
is mostly due to the communication with the SDS, when
considering small files; and due to the encryption of the file,
for bigger files. For middle size files (of 1MB) the proposed
system imposes a 6% additional delay.

The above results depict the create operation. While very
similar, the update operation is slightly different, requiring
an additional step, namely to interact with the SDS to lookup
the existing file’s metadata in particular to obtain its read
key. This would imply an extra cost of 50 ms to interact
with the SDS. However, the obtained results, depicted in
Figure 6, suggest that the update operation has higher cost
(between 267ms to 150ms). This larger delay is due to the
data write in the cloud backend. We suspect that this is due
to an additional cost in the provider itself when updating a
file, since it also has to look for the existing file, which does
not happen on the creation of the new file.

D. Performance of Delete

Another important operation to evaluate is delete. To
delete a file, both remotely and locally, the following sub-
steps are needed: (1) get credentials from SDS; (2) request
the SDS to delete the file’s metadata; (3) delete the file
locally, (4) connect to cloud provider; (5) delete the file on
cloud provider. To evaluate the performance of the file delete
operation, which should not significantly depend on the file
size, we first evaluated the delay imposed for a 1KB file.

The obtained results, depicted in Table II, suggest that
the largest performance impact is imposed by the interaction
with the cloud storage provider, imposing 87% of the delay,
about 1s. The two interactions with the SDS requires about
100ms (50ms + 50ms) on average. For larger files the delay
increase in this operation is minimum and imposed by the



Steps Values (ms) %
Get the file’s read key from SDS 57 33
Get the user’s public key from SDS 53 31
Decrypt file’s read key 1,3 0.7
Encrypt file’s read key with user’s public key 0,8 0.4
Add user to file’s ACL on SDS 61 35

Total 173 100

Table III
EXECUTION TIME OF THE SHARE OPERATION BROKEN UP INTO ITS

SUBCOMPONENTS (IN MILLISECONDS).

increase delay of the Delete file from cloud and Delete file
locally operations. For 10MB and 1MB files an average of
0.991s and 1.024s are required, respectively.

E. Performance of Share

In Storekeeper, access control to a file is made by encrypt-
ing the file and controlling with whom this key is shared. To
share a file with another user, the share operation is used,
composed of the sub-steps: (1) get the file’s read key from
SDS; (2) get the public key of the targeted user from the
SDS; (3) decipher the file’s read key (with user’s private
key); (4) cipher the read key with targeted users public key;
and (5) add that user to the file’s ACL on the SDS.

The detailed results obtained for this operation are de-
picted in Table III. These results suggest a average time
of about 170ms. This delay is imposed by the 3 accesses
to the SDS. Note that, the SDS interaction of step 5 takes
a bit more than the typical SDS interaction. This can be
justified by the fact that in this step the user’s (actually the
file read key encrypted with its public key) is added to the
file’s ACL which varies in size depending on the users in this
list. These results are completely independent of the cloud
storage provider.

F. Performance of Revoke

The performance of revoke depends on the size of the
file’s ACL. To study the performance evolution of the revoke
operation we executed micro-benchmarks varying the ACL
size of a file up to 100 users. Figure 7 presents the results of
this experiment. The x-axis shows how many users remain
with access to the file after revoking the access rights of a
given user. We can see that the minimum execution time of
revoke is 168ms and it happens when the final ACL length
is 1, which means that only the file owner can access the
file. Just like the share operation, this time is dominated by
the SDS accesses, which take 98,9% of the total time.

As the ACL length becomes larger, the total execution
time of revoke is more or less constant between two discon-
tinuities, one around 60 and 65 users and the other around
95 and 100 users. Starting with discontinuity 1, based on the
values there is a difference of 40ms between ACL’s size, that
corresponds to an increase of 23%. This increase is caused
by the third step of obtaining the public keys of all users
that remain in the ACL from SDS, such step increases 93%
varying from 41,9ms to 81ms. The increase in the third step

0

50

100

150

200

250

300

350

0 20 40 60 80 100

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

# users in ACL upon revoking one user

Figure 7. Evolution of revoke execution time with increasing ACL size.

0

1

2

3

4

1 kB 10 kB 100 kB 1 MB 10 MB

T
im

e
 i
n
 s

e
c
o
n
d
s

File size

GoogleDrive Dropbox

Figure 8. Performance of reads in different clouds.

appears to be due to the addition of one more public key in
the SDS’s response that forces the SSL socket to perform
another round-trip to the SDS. Looking at discontinuity 2,
there is a difference of 64ms between 99 and 100 users,
which corresponds to an increase of 26%. This increase
results from two contributions: first by an increase of 119%
while ciphering the new read key with each retrieved public
key, and second by an increase of 37% in sending the new
read key and updated ACL to the SDS.

G. Multi-cloud Performance

In order to evaluate the achievable metrics, and to demon-
strate the support of Storekeper to multiple cloud providers,
experimental results were also obtained using Dropbox.

Figure 8 depicts, side by side, the read performance con-
sidering both these cloud providers. These results show that
the read delay is consistently higher when using Dropbox.
Note that the delay imposed by the proposed solution is
independent from the cloud provider.

As for the write performance, we compare the file update
time using Dropbox and Google Drive. In our tests, we
execute the update operation rather create, since updates
are more frequent and hence more representative of the
performance experienced by Storekeeper’s users.

The obtained results, depicted in Figure 9 reveal that
for small files, between 1kB and 100kB, Dropbox provides
better results. However for larger files above 1MB, Google
Drive actually outperforms Dropbox. This is particularly
relevant for very large files. For 100MB files the difference
is very significantly, with Google presenting a delay of 6.5s
(throughput of 15.5MB/s), while with Dropbox presents a
delay of 60.8s (throughput of 1.64MB/s). It is our belief



Figure 9. Performance of updates in different clouds.

that this performance difference is completely due to the
cloud backends, where Google probably parallelizes data
writing while Dropbox serializes it. In either cases the delay
imposed by Storekeeper is always the same. This observation
may lead to an automated decision to store small files on
Dropbox and larger ones in Google Drive. This option is not
yet implemented in the presented version of Storekeeper.

V. RELATED WORK

Over the past years, extensive research has been carried
out on cloud storage security, with a particular focus on
the single cloud setting. BlueSky [3], for instance, aims to
replace local storage servers with a proxy, providing the
illusion of a single traditional server backing up data to
the cloud. BlueSky is mostly tailored to enterprise envi-
ronments and provides end-to-end confidentiality protection
from cloud providers by encrypting file system data before
shiping it to the cloud. SPORC [4] also interposes an
encryption layer between the user’s client and the cloud
provider, and additionally allow for secure file sharing
between users. Some other systems follow on SPORC’s
footsteps, but focusing specifically on access control [7], [8],
confidentiality protection [9], [10], or fault tolerance [11].
However, both BlueSky and SPORC lack the mechanisms to
enable secure exchange of files between multi-clouds, which
is required in a cloud aggregation system.

Multiple clouds have been handled by systems such as
DepSky [5] and SCFS [6], but these systems are conceptu-
ally different from cloud storage aggregators. DepSky and
SCFS combine multiple clouds into a conceptually unique
cloud called cloud-of-clouds (CoC). A CoC can then be
used by a single user (or by a set of users) to automatically
maintain multiple file replicas in different cloud backends.
The goal of a CoC is mostly to increase fault tolerance or
file availability. Users are oblivious to the actual location
of each file. In contrast, in cloud storage aggregators, users
do not share a common set of cloud accounts. Instead, each
user manages an individual pool of cloud accounts where
her files are located, and can freely share files with other
users. As a result, the technical challenges faced by such
systems are orthogonal to those addressed by Storekeeper.

VI. CONCLUSIONS

This paper presented Storekeeper, a privacy-preserving
cloud aggregation service that enables file sharing on multi-
user multi-cloud storage platforms while preserving data
confidentiality from cloud providers and the cloud aggre-
gator service. Storekeeper is further motivated by lack of
interoperability between cloud services, which makes man-
aging and sharing cloud-hosted files a nightmare for many
users. Storekeeper aims to fill this gap. To build Storekeeper,
in order to overcome heterogeneity issues between cloud
services, it was necessary to devise adequate (1) file naming
scheme, (2) user credentials, (3) consistency semantics, (4)
access permission model and (5) file operation protocols.
Storekeeper contributes to the cloud storage landscape with
an original design that provides solution to all these issues.

Acknowledgments: This work was partially supported by the
EC through project H2020-645342 (reTHINK), and by national
funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] “CloudFogger,” http://www.cloudfogger.com/.

[2] “Odrive,” http://www.odrive.com/.

[3] M. Vrable, S. Savage, and G. M. Voelker, “BlueSky: A Cloud-
Backed File System for the Enterprise,” in Proc. of FAST,
2012.

[4] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten, “SPORC: Group Collaboration using Untrusted Cloud
Resources,” in Proc. of OSDI, 2010.

[5] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa,
“DepSky: Dependable and Secure Storage in a Cloud-of-
Clouds,” ACM TOS, 2013.

[6] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia,
M. Pasin, and P. Verissimo, “SCFS: a shared cloud-backed
file system,” in Proc. of USENIX ATC, 2014.

[7] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure,
scalable, and fine-grained data access control in cloud com-
puting,” in Proc. of INFOCOM, 2010.

[8] S. Zarandioon, D. D. Yao, and V. Ganapathy, “K2C: Cryp-
tographic Cloud Storage with Lazy Revocation and Anony-
mous Access,” in Security and Privacy in Communication
Networks. Springer, 2012, pp. 59–76.

[9] G. Zhao, C. Rong, J. Li, F. Zhang, and Y. Tang, “Trusted data
sharing over untrusted cloud storage providers,” in Proc. of
CloudCom, 2010.

[10] H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen, “Towards
End-to-End Secure Content Storage and Delivery with Public
Cloud,” in Proc. of CODASPY. ACM, 2012.

[11] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud storage with minimal trust,”
TOCS, vol. 29, no. 4, p. 12, 2011.


