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ABSTRACT
Smart home technology has gained widespread adoption. However,
several instances of massive corporate surveillance and episodes of
sensor data breaches have raised many privacy concerns amongst
potential consumers. This paper presents PatrIoT, a private-by-
design IoT platform for smart home environments. PatrIoT revisits
the typical architecture of existing IoT platforms, and provides an
alternative design where the home owner retains full ownership
and control of smart device generated data. It leverages Intel SGX
to prevent unauthorized access to the data by untrusted IoT cloud
providers, and offers homeowners an intuitive security abstraction
named flowwall which allows them to specify easy-to-use policies
for controlling sensitive sensor data flows within their smart homes.
We have built and evaluated a PatrIoT prototype. Most of the par-
ticipants in a field study considered PatrIoT to be easy to use, and
the supported policies to be useful in protecting their privacy.
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1 INTRODUCTION
Despite the growth and popularity of smart home devices and sys-
tems, this technology remains overshadowed by a cloud of security
and privacy concerns. Today, by relying on IoT platforms like Sam-
sung SmartThings, Amazon Alexa, or Apple HomeKit, homeowners
can seamlessly control smart devices, such as smart locks, virtual
assistants, or baby cams, and run third-party applications (apps).
However, falling under the control of antagonist actors, these sys-
tems can be turned into authentic spying platforms. In fact, once
installed various third-party apps can collect highly sensitive data,
e.g., video, audio, or sensor events of the surrounding environment,
which can be abused in harmful ways [21].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8840-5/20/11. . . $15.00
https://doi.org/10.1145/3448891.3450333

Various mitigation techniques have been proposed for verifying
apps’ security and safety properties [3] and improving access con-
trol mechanisms [8]. However, common across all these efforts is
the assumption that IoT platform providers are to be considered
fully trusted. Currently, the platform providers can fully control the
IoT cloud backend and collect, store, and / or share users’ sensor
data. Unfortunately, such privileges have already caused serious
data misuse incidents that fall under the direct responsibility of IoT
platform providers, involving targeted advertisement [6], surveil-
lance and forensic investigations [9], insider-related eavesdropping
or massive data leakage [14].

In this paper, we are the first to revisit this assumption argu-
ing that, in addition to malicious smart apps, platform providers
themselves can be a major source of potential security and privacy
breaches that have been previously overlooked. To protect against
such threats, we present PatrIoT – a private-by-design IoT plat-
form for smart home apps in which homeowners retain full control
over sensor data generated by their devices. PatrIoT was designed
with two goals in mind: (1) prevent any arbitrary access to sensor
data by provider of the cloud server where PatrIoT is running, and
(2) provide homeowners with a practical yet easy to use interface
to control sensor data sharing with third party apps they install
without overwhelming them with details.

To achieve the first goal, PatrIoT relies on a hardened cloud
backend service that runs inside a trusted execution environment
(TEE) supported by Intel SGX technology. SGX secure enclaves offer
memory-isolated environments that provide confidentiality and in-
tegrity protection against untrusted privileged system processes. By
processing sensor data inside SGX secure enclaves, PatrIoT can ef-
fectively restrict the data access privileges of the cloud provider. To
reach the second goal, in analogy to a “firewall”, PatrIoT introduces
the notion of flowwall which controls how third-party apps use the
sensor data they request access to. Flowwall consists of an infor-
mation flow control (IFC) monitor that controls the global device
policies specified by the users. In contrast to existing permission-
based smart home systems [7], that are either too coarse-grained
or require certain expertise from the users to evaluate the potential
risks on a per-app basis, PatrIoT’s flowwall allows users to think
in terms of devices they have and how those devices’ data may or
may not be used by any app they install.

PatrIoT makes two central contributions involving its policy
specification and enforcement mechanisms. As for policy speci-
fication, many existing privacy-oriented solutions have failed to
provide an adequate user interface, overwhelming the users with
low-level details and causing the decision fatigue [2]. To address
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this usability challenge, PatrIoT’s UI was designed to make the pro-
cess of privacy policy specification intuitive and easy to follow for
a regular user. To define a policy, users operate with familiar device
names, meaningful data types, e.g. audio or video, and destinations
where these data types can or cannot flow to. The policy rules are
defined once and applied to all the apps installed in the future.

As for policy enforcement, it is necessary to efficiently track in-
formation flows within and across individual apps, and validate the
user policy. To this end, PatrIoT employs static analysis and policy
validation at the API level. An app is written in the form of a graph,
where edges represent data flow paths, and the nodes functions
provided by the API or by the developer. From the graphs of in-
stalled apps, PatrIoT generates a global and sound data flow model
using first-order logic predicates to check for policy violations.

We built a prototype of PatrIoT by leveraging SCONE [1], which
allows us to deploy the PatrIoT backend securely in a Docker con-
tainer running inside an SGX enclave. PatrIoT provides a JavaScript
API for app developers and runs on top of Node.js. We use Prolog
predicates to generate and check the apps’ data flow models.

We evaluated PatrIoT across multiple dimensions. Performance
wise, we observed that, despite some considerable overheads intro-
duced by the SGX technology, a single PatrIoT server can sustain
the traffic generated by a typical-sized household. By emulating
a realistic deployment scenario populated by 10 different smart
devices, and by implementing 20 different smart apps, we were able
to express a range of different policies, and validate that PatrIoT
can block or allow the data flows generated by these apps, thus
demonstrating the expressiveness and effectiveness of PatrIoT’s
policies. Lastly, to assess the usability and relevance of our system,
we performed a field study involving 45 participants. We found that
a majority of participants considered PatrIoT to be easy to use, and
its policy rules to be useful in protecting their privacy.

2 A PRIVATE-BY-DESIGN SMART PLATFORM
Our idea of a private-by-design IoT smart platform is one where
the home user is the only party that retains exclusive ownership
rights over the sensor data generated by the smart devices deployed
at home: IoT platform provider and smart apps can acquire only
the access rights that a user will explicitly decide to grant to them.
Next, we present the system and security models, and then our
design goals and a threat model.

2.1 System Model
The proposed system model is presented in Figure 1. Its central
component is the TEE-protected Smart App Runtime (TSAR). It
consists of a software stack which runs on a cloud infrastructure
and provides the basic backend services for managing smart de-
vices and hosting smart apps. With a management mobile app, a
homeowner (user) can securely interact with the TSAR service in
order to manage his smart devices, and install and configure smart
apps downloaded from an app store. Once installed, smart apps run
inside sandboxes, and can access sensor data based on permissions
and a global user-defined security policy.

In contrast to existing IoT platforms, the TSAR service is hard-
ened in such a way that an IoT cloud administrator does not have
any access privileges over the users’ sensor data. This is achieved
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Figure 1: System model of our private-by-design IoT platform.

with two techniques: (i) by restricting the TSAR service external
interfaces so that only the management app or smart devices are
able to connect to it through TLS channels, and (ii) by running it in-
side a TEE so as to prevent privileged OS processes from accessing
the TSAR memory where sensor data resides. A TEE is provided
by dedicated hardware such as Intel SGX. Thus, a home user will
only need to trust in the implementation of the TSAR software, and
acquire a proof of its secure deployment in a cloud so as to obtain
exclusive access rights in managing his smart home.

To build this level of trust, we envision a model where the TSAR
software is maintained by a trustworthy code maintainer, which
can be a single reputable entity or a consortium, and released open
source to help detect potential code vulnerabilities. It can be shipped
in the form of a container or VM image ready to be deployed on
general-purpose cloud with SGX support (e.g., Microsoft Azure’s
ACC), or be offered as a service by cloud providers to all security-
conscious smart home users (e.g., on a pay-per-use model).

PatrIoT offers a clean slate IoT platform design which is not
necessarily compatible with existing devices, apps and platforms.
While disruptive in its nature, we argue there are strong economic
incentives in favor of PatrIoT’s adoption. First, there is a huge de-
mand for privacy-preserving solutions among consumers and think
tanks [5]. Second, there is an increasing pressure from lawmakers
for stricter data protection measures (e.g., GDPR). Third, the smart
homemarket is still very fragmented and lacking standards; as such,
PatrIoT can make an important contribution to the consolidation
of privacy-enhancing techniques for smart homes.

2.2 Security Model
Existing IoT platforms such as Samsung SmartThings rely on a
discretionary access control model where each app requests per-
missions to access a given resource (e.g., a sensor reading). Once
granted, however, permissions alone fail to control how resources
will be used by an app, and are difficult to manage as the number of
devices and apps grows. To overcome these limitations, the TSAR
service incorporates not only a permission-based model, but also a
new security abstraction named flowwall.

A flowwall implements an IFC-based security monitor that al-
lows users to: (i) reason about global data flows generated by de-
vices rather than concentrating on individual apps, and (ii) block
privacy-sensitive flows without overwhelming them with details.
It supports three intuitive data flow patterns:

• S2S: Smart Device → App → Smart Device: These are internal
flows within home, e.g., app reads the status of a presence sensor to
detect someone’s arrival, and turns on a smart light.
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Figure 2: Smart home scenario with four installed apps: security
surveillance app WatchMyHouse, voice-activated WillItRain app
for weather forecast check, LightMyPath app for motion-triggered
lights control, and a PhotoBurst app which notifies the user with
the camera photo when motion or contact event is registered.

• S2M: Smart Device→App→Mobile Phone: Flows from a smart
device to the user’s mobile phone, e.g., app that streams a video feed
from a front door IP camera to the user’s phone.

• S2W: Smart Device→ App→Web: These are some of the most
sensitive flows, where sensor data is sent to Internet, e.g., an app
sends motion event to a remote website.

To characterize such flows and to easily specify policies for
blocking or allowing them, the flowwall is based on several concepts
that Figure 2 helps to introduce. This figure shows an example of
a home scenario where four smart apps are installed (A1-A4). To
perform their functions, smart apps may request access to certain
objects named endpoints. Endpoints represent system resources
that can act as producers (i.e. data sources) or as consumers (i.e. data
sinks) of sensor data. Each endpoint fits into one of three classes:

• Smart endpoint: Represents a particular smart device or device
type, e.g., IP camera. Each device type can generate specific types
of sensor data, e.g., Video or Image data types. Concretely, each
deployed IP camera is represented by a smart endpoint featuring its
own ID and an alias assigned by the home user, e.g., LivRoomCam
for the living room IP camera.

• Mobile endpoint: Represents a mobile device used to interact with
the smart home. It is identified by the phone number or other at-
tributes, e.g., the IMEI, and has a user-defined alias such asMyPhone.

• Web endpoint: Represents an Internet location in the form of
HTTPS URL patterns. For authenticated web services based on
OAuth2, the home user’s credentials must also be provided. Web
endpoints can be labeled with aliases, e.g., Dropbox to indicate any
host under the domain www.dropbox.com.

Data flows can then be represented by the arrows shown in Fig-
ure 2. A flow is defined by the transfer of a specific sensor data
type between source and sink endpoints. For instance smart app
A1 reads frames from the user’s camera located in the living room
(LivRoomCam) and uploads them to a user’s Dropbox account, gen-
erating a Image data flow between these two endpoints. Collectively,
apps A1-A4 illustrate all three data flow patterns, i.e., S2S, S2M, and
S2W. The flowwall will i) keep track of all possible apps’ data flows,
and ii) allow or block specific flows according to the rules specified
in a security policy. For instance, by blocking all flows from the
living room’s camera (LivRoomCam), apps A1 and A4 would neces-
sarily be blocked. Next, we clarify our requirements to build an IoT
system based on a flowwall security monitor.
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Figure 3: Components of PatrIoT TSAR.

2.3 Design Requirements and Threat Model
To build a private-by-design IoT system as described above, we
have three additional requirements: 1) the security policies must
be easy to specify, 2) the system should perform well despite the
introduction of new security mechanisms, and 3) the system should
provide a developer-friendly API for writing apps. Note, however,
that it is not our goal to preserve compatibility with existing IoT
platforms or legacy apps. Likewise, some existing smart devices
may not work off-the-shelf with our system. We redesign the IoT
platform in the interest of improved security properties.

Our system must be secure against: (i) untrusted smart apps,
which may attempt to use the API to circumvent the user-defined
security policies, e.g., read sensitive data from a sensor and send it to
an unauthorized party; (ii) network attacks, that aim to intercept the
communications between the system components, e.g., to launch
MITM attacks; and (iii) cloud server admins, with remote root-
privileges, who may attempt to access or interfere with the volatile
or persistent state of the TSAR container to extract sensitive sensor
data. Note, we assume that these parties may not collude.

We assume that several components are trusted: the PatrIoT’s
TSAR service and a management app, the IoT devices firmware,
the cryptographic primitives adopted for the implementation of
security protocols, and the underlying hardware infrastructure
used by the cloud provider. In particular we assume that the cloud
hosts are equipped with trusted hardware technology, namely Intel
SGX, which we assume to be correct. The mobile device running the
management app is trusted. Physical attacks and microarchitectural
side-channel attacks are out of scope.

3 DESIGN
We present PatrIoT – a system that provides a private-by-design
IoT platform – by focusing on its relevant design details.

3.1 TEE-protected Smart App Runtime
The core of our system is the PatrIoT TSAR service (see Figure 3).
It was built by leveraging SCONE [1], which offers a secure Docker
container execution environment on top of SGX-enabled CPUs and
protects the container processes from external attackers. It imple-
ments a Library OS with a small trusted computing base. The TSAR
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service is provided by a containerized process that runs a Node.js bi-
nary cross-compiled against the SCONE libraries, and with a native
Prolog engine add-on that is used for checking flowwall policies.
Node.js then runs the PatrIoT TSAR-specific components, which
are written in JavaScript.

The runtime manager is the heart of the TSAR service. It man-
ages smart devices, apps, and user configurations for a given home
environment. In particular, it controls the life cycle of apps and
maintains their execution contexts. Apps interact with the envi-
ronment through an API, which leverages an internal event bus for
interfacing with drivers. There are multiple drivers responsible for
interacting with smart, mobile and web endpoints, and for offering
other services (e.g., timers). The flowwall security monitor tracks
all apps’ data flows and enforces a user-defined security policy. The
persistent state consists of TSAR-specific files (e.g., security policy
and configuration files), and app packages installed by the user. It
is protected by sealed storage encryption techniques.

To obtain proof that the TSAR image has not been tampered
with and runs inside a legitimate SGX-enabled CPU on a cloud
host, PatrIoT implements a remote attestation protocol assisted by
the SCONE Configuration and Attestation Service (CAS). The CAS
allows to encrypt certain parts of the Docker container file system
and decrypt them only after successful attestation (i.e., sealed stor-
age). A newly instantiated SCONE container connects to the CAS
and requests a remote attestation. The CAS validates the enclave
by checking its hash value and other parameters. If the attestation
succeeds, the CAS provisions the decryption key necessary to de-
crypt the content of the container file system. We use this feature to
include a user-specific challenge inside the encrypted container file
system: a TLS key and certificate. If the management app is able to
connect to the TSAR service over HTTPS using said TLS certificate
to authenticate the server endpoint, it means that the attestation
was successful. At this point the PatrIoT backend is considered to
be trusted and fully operational. Next, we explain how apps are
programmed and supervised.

3.2 PatrIoT API
PatrIoT app development API was designed not only to offer easy-to-
use programming abstractions, but also to enable the implementa-
tion of a sound, meaningful, and efficient taint tracking mechanism
for flowwall policy checking purposes.
Element-based programming: In order to make all internal data
flows within a given app explicit and easy to analyze, PatrIoT adopts
a dataflow-based programming model where an app is written not
as a monolithic program (e.g., a single JavaScript function), but as
an element graph whose nodes consist of elements, and edges corre-
spond to connections between elements. Elements represent func-
tional units offered by the PatrIoT API (e.g., to interact with TSAR
drivers) or implemented by the app developer. The connections
define the only paths for data to flow between the app elements.

Elements can receive or send data through an interface consist-
ing of one or multiple input/output ports with attached data types.
Two elements can be connected using asynchronous unidirectional
or synchronous bidirectional links. Some elements are natively pro-
vided by the PatrIoT API. They have well-defined specifications,
both in terms of interface and expected behavior, and may require
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IPCamera  HttpReqAppElement
Image Req

(a) WatchMyHouse

Figure 4: Element graphs of two PatrIoT apps

specific permissions (e.g., to access smart devices). For this reason
these elements are named trusted. App developers can write cus-
tomized elements in JavaScript to implement application-specific
logic. Because their code and internal behavior are not trusted,
these elements are named untrusted and run inside sandboxes.
PatrIoTAPI by example: To illustrate these concepts, imagine we
want to develop a simple surveillance app named WatchMyHouse.
Its goal is to take a periodic picture from an IP camera selected by
the user and upload that picture to the user’s Dropbox account. We
can implement this app by creating an element graph consisting of
three elements (boxes) connected as shown in Figure 4 (a).

Trusted elements are colored in white, and the untrusted one is
in dark shade. Arrows represent elements’ pairwise connections
between input-output ports. PatrIoT API provides a rich library
of built-in trusted elements for writing a variety of different apps.
The trusted IPCamera element links to the IP Camera driver. It
takes a picture from a camera endpoint and forwards the picture
to a specific output port. The exact camera endpoint is selected by
the user at app installation time. Another trusted HttpReq element
links to theWeb driver. Whenever it receives a data blob in one of its
input ports, it sends a request to theWeb driver which in turn issues
an HTTPS post request to an OAuth2 authenticated web endpoint.
The target endpoint is explicitly indicated by the developer, and it
is validated by the web driver. The untrusted AppElement element
connects two other elements. The app developer needs to write the
JavaScript code for this element to read the picture from IPCamera,
and prepare and push a request to HttpReq. This app package will
then consist of a manifest file written in JSON that describes the
app’s element graph, and the JavaScript code of AppElement.

At runtime (see Figure 3), the TSAR service creates an application
execution context which consists of (i) element stubs that point to
the drivers that implement the trusted elements used by the app,
and (ii) stateless sandboxed instances of untrusted element code
(i.e., AppElement code). These objects communicate through the
event bus according to the paths that have been declared in the
app’s manifest. The flowwall security monitor oversees these flows,
and decides whether or not the app is allowed to execute depending
on the rules specified in the security policy.

3.3 Flowwall Security Policies
A flowwall security policy consists of a sequence of allow or block
ruleswhich are evaluated sequentially and applied atomically by the
security monitor. The flowwall is initialized with an implicit default
rule (R0) which blocks all possible flows, i.e., no app will be able
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R1. allow Everything from Anywhere to Anywhere
R2. block Everything from Anywhere to Web
R3. block Everything from Anywhere to Phone
R4. allow Image from LivRoomCam to Dropbox

at 12:00-14:00,Wed
R5. allow Everything from Anywhere to MyPhone

Figure 5: Example of a policy for the scenario in Figure 2.

Allow Block

LivRoomCam

FrontDoorCam

AllCameras

 

 

 

Image

Video

Audio

Everything

IP Cameras

Source?

Anywhere

Data type?

Rule type?

Dropbox

Any

Web sites

Sink?

Anywhere

Wednesday
Day

When?

12h-14h
Time

(1)

(2)

(3) (4) (5)

Figure 6: Schematic representation of the UI workflow to specify
rule R4 (see Figure 5). To avoid overwhelming the user with too
much information, in step 2, the system only displays existing valid
source endpoints. Once the user selects the source endpoint (3), Pa-
trIoT shows only the data types that can be generated by that end-
point. Similarly, in step 4, only valid sink endpoints are displayed.

to communicate unless R0 is overridden by a user-defined security
policy. Next, we illustrate how security policies are specified.
Overview by example: Unauthorized sensor data sharing with
Internet destinations or arbitrary mobile phones may lead to poten-
tial data exfiltration. Figure 5 shows a simple policy that aims to
whitelist the web and mobile endpoints considered to be trustwor-
thy for the hypothetical scenario presented in Figure 2. It contains
five rules (R1-R5) which are interpreted sequentially. The policy
first overrides R0 by allowing flows of any kind to occur (R1), and
then blocks all flows to the web and tomobile endpoints (R2 and R3);
this allows only data flows to occur within the home environment.
Next, two exceptions are opened: R4 lets camera frame images to
be collected from the living room’s camera and uploaded to the
user’s Dropbox account during a certain time of the day (e.g. when
the cleaning staff has access to the house), and R5 allows sensor
data flows to the user’s own mobile phone.
Rule syntax: In general, the format of a rule is as follows:

allow | block ⟨data type list⟩ from ⟨source endpoint list⟩ to ⟨sink
endpoint list⟩ [at ⟨time period list⟩]

The keywords “allow” or “block” indicate the rule type, i.e.,
whether the rule allows or blocks the data flows matched by the
rule, respectively. The data type list indicates one ormultiple comma
separated types of data to be matched. They can be simple types,
e.g., Video, or the wildcard Everything to indicate all possible sim-
ple types. The keywords “from” and “to” are followed by a list of
source and sink endpoints, respectively, which may specify indi-
vidual endpoints, e.g., LivRoomCam, and/or include wildcards, such
as Anywhere for all valid endpoints, and driver-specific terms, e.g.,

Data Flow
Graph

Data Flow
Matrix

Security Policy Policy
Matrix

Action

A1 on

A2 off

Action Vector

1. 2.

3.

4.App Element Graph

Endpoint Descriptor

Figure 7:Data structures operated by the securitymonitor. The pol-
icy evaluation algorithm is executed strictly on occasions where the
configuration of data flows or policy restrictions may change.

IPCamera to refer to all IP camera endpoints. Optionally, it is possi-
ble to specify time restrictions by using the keyword “at” followed
by a time period, e.g., “12:00-14:00”, and days of the week.
User interface for policy specification: Specifying policy rules
using the syntax presented above can be cumbersome for untrained
users. To help with this procedure, PatrIoT’s management app
provides a simple UI that guides the user along a five step process
(see Figure 6) which helps the user to reason in terms of privacy-
sensitive/insensitive data flows he intends to allow/block. To create
a new rule, he starts by selecting the rule type, i.e., “allow” or “block”
(1). Then, he picks the source endpoint (2), tells what data types
from that source he wants to allow or block (3), indicates the sink
endpoint (4), and optionally provides a temporal restriction for the
rule (5). In a different UI view, the user can manage the security
policy, list all rules, change their order, modify them, or delete them.

3.4 Policy Enforcement
To enforce a security policy, the security monitor implements a
policy evaluation algorithm which decides the execution state of
every installed app based on whether or not the internal app data
flows violate the policy rules. The algorithm updates an action
vector (AV), where AV[𝑎] indicates the intended execution state
for app 𝑎: off means the app must be suspended, or on means the
app can be started. Every time AV is changed, the security monitor
disables or enables the apps accordingly.
Policy evaluation algorithm: Figure 7 shows the inputs, the out-
put, and intermediate data structures generated by the policy eval-
uation algorithm. For inputs, it takes the element graphs of all
installed apps, descriptors of existing endpoints, and the security
policy. Based on these inputs, the algorithm generates two data
structures which aim to model all possible data flows generated by
the apps – the data flow graph and the data flow matrix; as well as a
data structure that expresses the policy rules in an efficient manner
– the policy matrix.

To explain how the algorithm works, consider the scenario of
Figure 2. Assume that PatrIoT is configuredwith the policy shown in
Figure 5 and that only two of the apps are installed: WatchMyHouse
(A1) and PhotoBurst (A2). To ease the explanation, we follow the
algorithm along the four steps shown in Figure 7, assuming that
the intermediate data structures are built from scratch:
1. Modeling of data flows: The security monitor generates a
model of all data flows that can potentially exist. This model con-
sists of a set of Prolog predicates that specify a global data flow
graph (DFG) based on the installed apps and existing endpoints. Fig-
ure 8 represents the resulting DFG for our example scenario. Nodes
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consist of the aggregate elements (represented as boxes) pertaining
to all installed apps (A1 and A2) and the endpoints that these apps
have access to (represented in circles). Directed edges connecting
two nodes 𝑛1 and 𝑛2 indicate that data can flow from 𝑛1 to 𝑛2. The
type of data and its provenance is indicated in the labels attached
to the edge. Each label consists of a pair ⟨𝑑, 𝑒⟩ which indicates the
data type 𝑑 and its provenance 𝑒 , i.e., 𝑑’s source endpoint.

If 𝑛1 is an endpoint and 𝑛2 is an element, it means that 𝑛1 pro-
duces a data type generated by 𝑛1’s respective driver and later
forwarded to the element 𝑛2. This is the case, for instance, of ele-
ment IPCamera, which is used in the context of application A1 and
reads an image from endpoint E2, i.e., the living room camera. The
label associated with this edge is ⟨I, E2⟩ to indicate an image I that
can be generated by E2.

If 𝑛1 and 𝑛2 are both elements, then the edges reflect the con-
nections of the respective app’s element graphs and the possible
types of data that can be transferred through these connections.
These data types are indicated by the label attached to the edge
and determined by the output of element 𝑛1. This output, in turn,
tends to be a function of 𝑛1’s inputs, but it depends on the specific
functionality implemented by 𝑛1. Below in this section we explain
in more detail how this is performed, but assume for now that an
element propagates taint from all its inputs to all its outputs, in
other words, the label of each of 𝑛1’s outputs results from the union
of the labels of all its inputs. Thus, for instance, A1’s AppElement
propagates label ⟨I, E2⟩ from its input to its output, which means
that HttpReq can receive image data from E2.

The last case is when 𝑛1 is an element and 𝑛2 is an endpoint,
which means that 𝑛2 is a data sink for the data types indicated in
the edge’s respective label. For example, HttpRequest can send to
Dropbox an image originating from E2.
2. Extraction of data flows: The DFG model is used to determine
all possible data flows between source and sink endpoints, and
record that information in the form of a (sparse) data flow matrix
(DFM). The resulting matrix for our example scenario is shown in
Figure 8. Rows and columns indicate source and sink endpoints,
respectively. DFM[𝑒1, 𝑒2] is empty if no flow exists from 𝑒1 to 𝑒2;
otherwise, it contains a list of pairs ⟨𝑑, 𝑎⟩ which indicate the data
type 𝑑 that can flow between them and identify the app 𝑎 responsi-
ble for that flow. To build this matrix, the security monitor executes
a DFG Prolog query which computes the labels of the ingress edges
of every sink 𝑒2. From these labels, 𝑑 and 𝑒1 are extracted; from the
element linked to 𝑒2, the app 𝑎 is identified.
3. Expansion of the policy rules: Before the final stage of policy
evaluation, it is necessary to create an adequate representation of
the security policy that allows to match the policy rules against the
data flows described in the DFM. In particular, it is necessary to
properly parse the references to groups of endpoints (e.g., Anywhere)
and take into account the temporal restrictions in the rules (if any).
This is the role of the Policy Matrix (PM) shown in Figure 8.
4. Policy evaluation and AV update: The last stage of the policy
evaluation algorithm is to match the rules of the PM against the data
flows described in the DFM and produce an action vector (AV) that
tells which apps must be suspended or resumed. For each rule 𝑟𝑖 , the
algorithm obtains all the source-sink endpoint pairs (𝑒1, 𝑒2)𝑟𝑖 and
uses them to index the data flow table at position DFM[𝑒1, 𝑒2] and
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Source Sink Datatype Action
R1 E2, E3, E4 E1,E5 I, C, M on
R2 E2, E3, E4 E1 I, C, M off
R3 E2, E3, E4 E5 I, C, M off
R4 E2 E1 I off
R5 E2, E3, E4 E5 I, C, M on

Policy Matrix (PM)

 

Figure 8: Intermediate data structures for policy evaluation in the
running example. The DFM shows that the images from the user’s
living room camera (E2) can be sent to Dropbox via A1 or to his
mobile phone via A2, and that all possible destinations of motion
and contact sensor readings are limited to his mobile phone only
via A2. The PM shows that the action value for R4 is off : this means
that this PMversion is covering a time spanwhere that targetedflow
is not allowed, i.e., outside the 12h-14h time slot on Wednesdays.

look up its value. If it is empty, no flow exists that matches the rule
and the algorithm continues. Otherwise, DFM[𝑒1, 𝑒2] contains pairs
⟨𝑑, 𝑎⟩ that tell the data type (𝑑) of the matched flow and the identity
of the app (𝑎) responsible for it. Next, the algorithm only needs
to check if 𝑑 corresponds to the data type indicated in the rule to
verify if there is a full match. In that case, the action vector AV is
updated according to the action instructed by the rule: if action is
allowed, then AV[𝑎]=on, otherwise, action is denied, and AV[𝑎]=off.
After traversing all rules the final version of AV is [on, off ], i.e., A1
will be enabled, and A2 disabled.

3.5 Data Flow Graph Model Generation
As mentioned above, the security monitor generates a DFG model
that can be used for extracting the data flows between any given
source and sink endpoints. We use first-order logic to create this
model. For any given app, the security monitor reads the app’s
manifest file, and creates two kinds of predicates: topology predi-
cates, and output taint propagation (OTP) predicates. The former
represent the app’s element graph; the latter tell how each element
propagates labeled inputs to its outputs.

OTP predicates for trusted elements are statically defined as
part of the PatrIoT API. For each trusted element of the API, along
with its JavaScript implementation, there is an accompanying file
containing the element’s OTP predicates. For instance, an OTP for
an IPCamera element can be expressed as follows:
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IPCamera of app 𝑎1 can output to port OutputFramePort label
⟨Image, 𝑒𝑘 ⟩ if 𝑒𝑘 ∈ {valid source IP Camera endpoint}, and user

gave 𝑎1 the permission to access 𝑒𝑘 .

For an untrusted element it is not possible to specify an accu-
rate OTP predicate that reflects the actual behavior of the element.
Consequently, untrusted elements are modeled as ‘funnels’, i.e.,
the labels from all the element’s inputs will be forwarded to every
single output port. This behavior can be expressed as follows:

Untrusted element 𝑢 can output to every output port 𝑝𝑜𝑢𝑡 the
label set 𝐿, such that 𝐿 =

⋃{labels received from every input port
𝑝𝑖𝑛} and 𝑝𝑜𝑢𝑡 and 𝑝𝑖𝑛 belong to 𝑢.

Thus, in Figure 8, e.g., we can see that the untrusted elements
in apps A1 and A2 – both named AppElement – can propagate all
labels between their respective input and output ports.

When generating the DFG, the security monitor loads the OTP
predicates for trusted and untrusted app elements into the DFG
model. Based on these predicates, the security monitor can model
the tainted labels propagation within the app. Finally, to determine
all the data flows between any given source and sink endpoints,
PatrIoT uses another predicate:

Data type X can flow from endpoint 𝑒1 to endpoint 𝑒2 if exists a
label 𝑙 = ⟨X, 𝑒1⟩ such that 𝑙 reaches 𝑒2.

By issuing this query to a first-order logic engine, existing so-
lutions will be found by unifying it against the topology and OTP
predicates of the DFG model. If there is a sequence of intercon-
nected nodes that propagate a data type from 𝑒1 to 𝑒2, a result
will be found and assigned to X. The security monitor uses this
technique to fill in the data flow matrix.

4 IMPLEMENTATION
We implemented a full prototype of the PatrIoT system. In total, we
wrote ∼20K lines of JavaScript code. The TSAR container was built
using a SCONE Docker image featuring a Node.js v.8.9.4 binary
cross-compiled against SCONE libs. Node.js includes a native add-
on that implements a Prolog query engine based on SWI-Prolog
v.7.7.8. We developed in total 17 drivers responsible for the imple-
mentation of 35 trusted elements. The management app consists of
a React-based frontend that serves a dynamic web application to
connected clients. The backend was implemented as a REST API
server provided by the runtime manager of the TSAR service.

To sandbox untrusted app elements, we rely on the VM2 imple-
mentation of a VM sandbox module for Node.js. Sandboxed code
cannot import external modules, nor any global variables or classes
from the main PatrIoT context.

5 EVALUATION
Wepresent our evaluation of PatrIoT focusing on threemain aspects:
i) performance, ii) expressiveness, and iii) usability.

5.1 Case Study
To evaluate our system, we recreate the smart home scenario dis-
played in Figure 9. This home belongs to a family of three: Samantha,
John and their baby. A nanny comes occasionally to babysit. There
is also a predefined schedule for cleaning staff to access the home.
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Figure 9: Emulated smart home setup.

We emulated ten devices (see Figure 9). The front door lock was
emulated using an Arduino-based contact sensor. Presence, motion,
smoke sensors and an alarm were emulated using corresponding
Arduino-based sensors (HC-SR501 PIR, MQ-2, piezo buzzer). IP
cameras were emulated using a USB camera attached to a Raspberry
Pi device and streaming an MJPEG video. The same Raspberry Pi
equipped with a microphone and a speech-recognition software
running on it was used to emulate a voice assistant device. Finally,
we used a Philips Hue light bulb as a smart light device.

We implemented a total of 20 PatrIoT apps that feature a device-
to-device, device-to-mobile and device-to-web interaction, as well
as a set of voice-activated apps that can either interact with local
devices or web services.

5.2 Performance
To assess the performance of our system, we evaluated indepen-
dently the system initialization time, the systemmaximum through-
put, and the performance of applications.
Experimental setup: The system initialization time comprises
three parts: attestation time, TSAR service bootstrap time, and
app loading time. For the remote attestation we relied on a locally
deployed SCONE CAS server running on the same machine. The
attestation time includes the time needed to authenticate PatrIoT
with a CAS instance, receive a session key, decrypt the PatrIoT core
files, and start the TSAR service. Bootstrap and app loading times
were measured separately after the remote attestation process.

We evaluated the maximum system throughput by stress-testing
the TSAR service. We used the wrk2 tool running on a second
machine in the same network and generating a constant throughput
load. We then measured the observed latency. We set the number
of concurrent connections equal to the number of devices in our
case study (ten). We increased the throughput gradually until the
latency started to degrade or socket connection errors appeared.
We recorded the maximum throughput right before the saturation
point. As a reference, we used the latest Apache2 web server.

To analyze the performance of PatrIoT appswe used a benchmark
based on the use-case apps described in Section 5.1. We measured
the time it took to execute a complete app data flow graph: from
the time a trigger event was generated until the time it was fully
processed by the app. We also measured the Prolog query time for
each app’s DFG model. This is the most time consuming step of the
policy enforcement algorithm (see Section 3.4).

For our testbed, we used two servers running 64bit Ubuntu
18.04.4 LTS with a 16-core 3.60GHz Intel i9-9900K CPU and 16GB
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Figure 10: Throughput versus latency evaluation.

Table 1: Attestation, bootstrap, and app loading times.

Environment Attestation time, s Bootstrap time, ms App loading time, ms

Inside SGX 13.5 14.979 117.73

Outside SGX n/a 4.258 1.012

of RAM. We adopted the 19.03.9 version of Docker engine to run
PatrIoT. PatrIoT core files inside a Docker image were encrypted us-
ing SCONE’s File Shield. We evaluated the performance of PatrIoT
running inside and outside of SCONE SGX separately. Obtained
values were averaged across 20 runs.
System initialization time: Table 1 presents PatrIoT’s attestation,
bootstrap and app loading times. It takes on average 13.5 seconds to
attest PatrIoT running inside an SGX SCONE enclave. Most of this
time is taken by communication with a CAS server and decryption
of PatrIoT core files after a successful attestation. Additional delay
comes from the fact that SCONE needs to allocate the required
memory resources at enclave start time which depending on the
specified heap size might take more time. However, considering
that PatrIoT is a server component which needs to be started only
once and run continuously such a one-time delay can be tolerated.
The bootstrap time overhead of using SGX is just 10 ms which is
mostly caused by enclave transitions during system calls. The app
loading time overhead reaches 118 ms, which is the time it takes to
decrypt the app files in the container’s encrypted file system.
Load test: Figure 10 features the results of PatrIoT server test
when run inside and outside SGX SCONE enclave. PatrIoT Server
performed similarly in both settings until the load reached 1900
requests per second, at which point the latency of the PatrIoT’s
SGX version started to degrade. The standalone version of PatrIoT
reached a saturation point at around 9000 requests per second. Since
many smart devices generate low-rate network traffic, this limit is
acceptable. We observed nearly 5x performance loss when running
PatrIoT inside an SGX SCONE enclave. This is consistent with the
original reports by SCONE authors [1]. SCONE is not optimized for
network-intensive applications like PatrIoT. Apache outperformed
the TSAR service, since the former is multi-threaded, while the
latter’s Node.js engine is single-threaded.
Application performance: The left side of Figure 11 displays the
execution times for each use-case app. Execution times are tightly
dependent on each app’s workload, ranging between 32 and 690 ms

0 100 200 300 400 500 600 700
Execution Time (ms)

A20. VacationLightning
A19. SmokeAlert

A18. SmokeAlarm
A17. Baby'sUp
A16. Economie

A15. HoneyI'mHome
A14. LetThereBeLight

A13. DoorNotifier
A12. AutolockAfterXMin

A11. Doorman
A10. DoorCheck

A09. LightItUp
A08. What'sUp

A07. AudioMessage
A06. SpotifyController

A05. SmartSecurity
A04. PhotoBurst

A03. LightMyPath
A02. WillItRain

A01. WatchMyHouse

0 10 20 30 40 50 60 70
Query Time (ms)

Inside SGX SCONE Outside SGX SCONE

Figure 11: PatrIoT app benchmark performance.

(inside SCONE). Apps that send sensor data to the Internet or as
part of the push notification (e.g. AudioMessage, Baby’sUp) often
have the highest execution time due to the network latency and
the data transfer rate. The right side of Figure 11 features the time
needed to execute a Prolog query and extract flow information from
a given app’s DFG. The average query time is 4.7 ms and 1.84 ms
(inside and outside SGX SCONE) for the apps with a simple DFG. If
an app has a DFG with multiple data sources, Prolog’s backtracking
mechanism requires more time to inspect all possible data flows,
e.g., SmartSecurity which consists of 11 elements 6 of which emit
different data types. While its query time is in a stark contrast to
the other apps it is still below 70 ms.

5.3 Policy Expressiveness
To assess the expressiveness of PatrIoT’s flowwall policies, we have
written several allow / block rules that make sense for our smart
home scenario (see Figure 12). The first three block rules (RB1-
RB3) are the most restrictive: RB1 blocks all the app flows, RB2
only blocks flows to the Internet, and RB3 blocks flows to mobile
endpoints. RB4 rule displays how a S2S flow (see Section 2.2) can
be effectively blocked. Rules RB5-RB6 prevent the most privacy
sensitive data flows (voice assistant and baby cam) to the Internet.
The allow rules (RA1-RA6) start with RA1, which allows all possible
flows, followed by more restrictive ones based on certain conditions.

In general, John wants to prevent his smart home devices from
accessing the Internet, unless for communication with known and
authorized services. For instance, such privileges are not needed to
view the living room camera feed on John’s or Samantha’s phones.
However, John may want to allow camera connections to his per-
sonal backup server (e.g. Dropbox) or security company (e.g. ADT)
in case of a break-in (rules RA2, RA3). With another rule John can
express his privacy concerns regarding a smart assistant device,
which can continuously listen for voice commands and can poten-
tially record user conversations and stream audio to unauthorized
parties. To prevent this, John can block all the raw audio flows from
the smart assistant to the Internet (RB5). For the voice-activated
apps that require Internet connectivity specific rules can be defined
to grant access to targeted services (rule RA4).

Figure 12 shows the results of these rules applied to our use-case
apps. If we disregard an RB1 rule we can see that the majority of
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Rule A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20
 RB1. block Everything from Anywhere to Anywhere

 RB2. block Everything from Anywhere to Web

 RB3. block Everything from Anywhere to Phone

 RB4. block PresenceInfo from PresenceSensor to SmartLight

 RB5. block Audio from SmartAssistant to Web

 RB6. block Everything from BabyCam to Web

 RA1. allow Everything from Anywhere to Anywhere

 RA2. allow Image from LivRoomCam to Dropbox at 12:00-14:00,Wednesday

 RA3. allow Everything from LivCam,Alarm,Smoke/Contact/Motion Sens. to ADTSecurity

 RA4. allow Command from SmartAssistant to Spotify, NYTimes, BBCWeather

 RA5. allow Everything from Anywhere to John'sPhone, Samantha'sPhone

 RA6. allow Everything from BabyCam to Nanny'sPhone at 9:00-17:00, weekdays

Figure 12: Summary of policy evaluation for use-case apps. Red ( ) and green ( ) cells denote blocked or allowed apps respectively, apps
with yellow cell ( ) are conditionally blocked, empty cell means the app flows are out of the rule’s scope.

apps can operate nominally with all other rules in place. In fact,
all of these apps operate with device-to-device flows which are
usually deemed less privacy sensitive as compared to those that
span across different domains (Internet, mobile, etc.). A quarter of
apps that issue calls to mobile or web endpoints can be affected by
rules RB2 and RB3. However, a set of custom endpoint-based allow
rules could be added by the user to allow these apps’ data flows.

5.4 Usability
Our last evaluation goal aims to assess the usability of our system,
namely by analyzing the added-value provided by PatrIoT’s privacy
controls and assessing the users’ experience.
Methodology:We conducted a two stage user study with 45 partic-
ipants (computer department employees) with a goal to determine
common privacy concerns of the smart device users, and their abil-
ity to express these concerns within a PatrIoT’s UI. In a first stage,
the participants were given the smart home scenario described in
Figure 9 and asked to decide if a given device data flow should be
allowed, blocked, or allowed only in a certain condition. All three
data flow types were exercised: S2M, S2W, and S2S. The second
stage of the survey was more practical. With the PatrIoT mobile app
the participants had to register a new user account, define policy
rules for a baby camera device, and then verify a given app data
flows against those rules. In the end we asked the participants to
tell us about their experience with PatrIoT.
Findings about privacy preferences: Figure 13 presents ourmain
findings for the first survey stage, which was split into three tasks.
In a first task, we asked the participants to decide if data from the
baby camera should be allowed to flow to a nanny’s phone. Most
participants (84.8%) chose to restrict this flow temporarily (i.e. when
babysitting); 13% and only 2.2% decided to always block or allow
such a data flow respectively. These results confirmed our expec-
tations: most of the people consider such data flow to be highly
sensitive and want to limit access to it as much as possible.

As part of a second task, the participants were asked to decide
if motion sensor data can flow to smart lights. On the one hand,
the majority of participants (54.3%) decided to restrict such a data
flow to a certain time of the day (when the user is at home). On the
other hand, others (43.5%) decided to allow such a flow without any
restrictions. Finally, only 2.2% opted for blocking it. The results are
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Figure 13: Survey results: privacy preferences.
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Figure 14: Survey results: user experience.

in line with our expectations: people are less concerned with the
device-to-device data flows taking place within their home domain
as long as there are no mobile or Internet endpoints involved.

Lastly, in a third task, a motion sensor and its data flows to the
Internet were analyzed. All of the participants opted for restricting
the data flows in one way or another. We can conclude that partici-
pants are cautious even with motion sensor data flows and prefer
to restrict those when possible.
Findings about user experience: Figure 14 presents our main
findings in the second survey stage. The majority of participants
agreed that PatrIoT rules are useful in protecting user privacy
(89.2%). Only a small fraction remained neutral (4.3%) or disagreed
with this statement (6.5%). These results highlight PatrIoT’s ability
to express smart home user privacy preferences of various com-
plexity in a clear and practical way.

Regarding the way the security policy rules are defined in Pa-
trIoT, most participants found it intuitive and clear (73.9%). A small
fraction of participants however found it slightly confusing (17.4%).
Overall, the results are quite promising: a per-device privacy rule
approach proved to be clear and easy to grasp and apply. However,
some adjustments should be made to make it easier to understand
and define privacy rules (e.g. provide a step-by-step tutorial at first
run). The participants also suggested adding default policy rules for
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the average user to use from the start. These rules could be added
automatically based on the connected devices.

Finally, 82.6% of participants considered the PatrIoT to be easy
and straightforward to use. At the same time, only a small portion
of the participants found it neither easy nor difficult (8.7%) or some-
times difficult to use (8.7%). Overall, the interface proved to be clear
and intuitive for the majority of people. This is an important find-
ing for us since many privacy-oriented tools often fail to provide a
user-friendly interface or require certain expertise from users.

6 SECURITY DISCUSSION
Malicious apps may attempt to generate data flows that cannot
be monitored by PatrIoT’s security monitor. However, by simply
crafting an app’s element graph and using PatrIoT’s API elements,
this will not be possible because our system can preemptively cre-
ate a sound model of all potential data flows based on the app’s
graph. The creation of covert channels based on communication
patterns to authorized network destinations may be possible in the
current system design, but they fall outside of our threat model.
Devising methods for shaping traffic and reducing bandwidth of
such channels is an interesting topic for further study.

Currently, our system is dependent on a relatively large trusted
computing base (TCB). In particular, PatrIoT’s TCB comprises its
API and runtime code, Node.js, Javascript engine, and SCONE’s
library. In spite of this, the total TCB size is comparable with other
SGX-based systems, e.g. [10, 13, 15]. Studying ways for reducing
the TCB size constitutes an interesting avenue for future work.

Finally, PatrIoT may be vulnerable to recently demonstrated side-
channel attacks on SGX.While we consider such attacks to be out of
scope, PatrIoT can take advantage of various mitigation techniques,
e.g. [12], or use an alternative TEE, e.g. ARM TrustZone.

7 RELATEDWORK
TEEs and SGX-shielded execution have been proposed to secure
various workloads on untrusted clouds [10, 16]. PatrIoT is the first
system that leverages these techniques to provide IoT service back-
end protections. Similarly to PatrIoT, others have also suggested to
use IFC techniques for prevention of IoT privacy breaches in the
cloud [17]. However, in contrast with our work, these authors pro-
pose classic IFC models operating at a very low level of abstraction
and assume trusted platform providers.

A large number of systems has been proposed focusing on secu-
rity and privacy of existing IoT smart platforms [3, 18, 19]. PatrIoT
complements these systems by focusing exclusively on detection
and prevention of privacy-sensitive data flows. Other systems of-
fer mechanisms for tracking information leakage [4, 11]. However,
in these systems the security policies are defined per app, which
prevents tracking information flows across multiple apps. PatrIoT
overcomes these limitations by providing an original IFC model
that can globally track flows across all apps in home.

Lastly, we highlight two systems that propose data flow program-
ming for home hub devices [8, 20]. Flowfence [8] allows IoT app
developers to split their apps into modules that operate with sensi-
tive data sources and those that do not, and to track the data flows
between those parts. However, in contrast to PatrIoT, Flowfence
employs dynamic taint techniques that are vulnerable to timing

side channel attacks. From HomePad [20], we borrowed the idea of
modeling IoT apps as an element flow graphs, and employing Prolog
rules for checking privacy policies. However, HomePad’s analysis is
limited to per-app policies, which are harder to manage as the num-
ber of devices and apps grows. PatrIoT goes beyond HomePad by
introducing a full fledged flowwall security monitoring abstraction
that provides holistic control of the home environment.

8 CONCLUSIONS
We presented PatrIoT, a private-by-design IoT platform, which
ensures secure data processing by leveraging SGX secure enclaves.
PatrIoT’s flowwall security monitor allows end-users to obtain fine-
grained control of data flows generated by IoT devices, and prevent
potential privacy violations by enforcing a privacy policy.
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