
Building Private-by-Design IoT Systems
Igor Zavalyshyn

INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
UCLouvain, ICTEAM, Louvain-la-Neuve, Belgium

igor.zavalyshyn@tecnico.ulisboa.pt

Abstract
Internet of Things (IoT) devices have revolutionized the way
we interact with our physical environment. With a single tap
on a smartphone screen or a voice command one can control
home lighting, thermostats and cameras, monitor physical
activity, and keep track of personal belongings. However,
while these devices become more and more embedded in our
daily lives, there are growing concerns over the privacy and
security of highly sensitive data they collect. Numerous cases
of data abuse, unauthorized sharing and leakage have been
reported. Unfortunately, existing IoT systems have not only
failed to prevent such cases, but often contributed to those.
To address this issue, we propose a clean-slate approach to
building secure and private-by-design IoT systems, in which
users retain full control and ownership of their IoT data. The
approach builds upon key design concepts: (1) a dataflow
programming model for building IoT apps and services, and
(2) a mechanism to track sensitive sensor data flows inside
these apps and automatically verify their compliance with
user-defined privacy and security preferences.

CCS Concepts: • Security and privacy → Information
flow control; Access control.

Keywords: IoT, privacy, data flows tracking and verification
ACM Reference Format:
Igor Zavalyshyn. 2020. Building Private-by-Design IoT Systems.
In 21st International Middleware Conference Doctoral Symposium
(Middleware ’20 Doctoral Symposium), December 7–11, 2020, Delft,
Netherlands. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3429351.3431750

1 Introduction
With the rising popularity of IoT systems, such as Ama-
zon Alexa, Google Home or Samsung SmartThings, and a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8200-7/20/12. . . $15.00
https://doi.org/10.1145/3429351.3431750

growing amount and variety of sensitive data they collect,
there is still a deficit of mechanisms to ensure user privacy
and security. In fact, existing IoT systems often resemble a
“black hole“ that collects sensitive sensor data from the con-
nected devices leaving the end users clueless about further
data whereabouts. Unfortunately, this situation has already
caused numerous incidents of massive data leackage [7],
security breaches [8], insider-related eavesdropping or peep-
ing [1, 6], as well as created opportunities for unauthorized
surveillance and forensic investigations [3, 4].

To fill this gap, we propose a clean-slate approach to build-
ing secure and private-by-design IoT systems. It aims to em-
power end users with full control over sensor-collected data,
and enable them to specify and enforce privacy and security
preferences regarding sensor data collection, processing and
sharing. Our approach builds upon two key design concepts.
First, we introduce a novel dataflow programming model for
IoT developers and service providers to create their privacy-
aware data processing applications, apps. It allows to keep
track not only (1) of how the sensor data flowswithin the app,
but also (2) of the semantics of the data as it gets processed
inside the app. Our second key design concept enables end
users to automatically verify if a given app can violate any of
their privacy expectations. To this end, we generate a formal
model of the app’s elements graph using Prolog predicates,
and issue a set of queries to determine the existence of data
flows that are in conflict with user-defined privacy policy. A
user can, e.g., determine if an app that requires access to a
camera feed for motion detection can potentially send raw
camera images to a security company instead of the ‘motion
detected’ events as expected.

We applied these concepts in the design of three systems
that span across local (home), cloud and mobile domains. For
the local domain, we present HomePad [10], a privacy-aware
smart home hub that provides a runtime environment for
IoT apps that follow the dataflow programming model to pro-
cess sensitive sensor data in accordance with user-defined
rules. It offers a rich API with an extensive set of built-in
elements for IoT app development, and a verification engine
for the end users to assess the apps’ privacy properties. For
the cloud domain, we introduce PatrIoT, a private-by-design
IoT platform that extends a dataflow programming model
to the cloud. It leverages Intel SGX to prevent unauthorized
access to the sensor data when processed at an untrusted
cloud environment, and offers the end users an intuitive
security abstraction named flowwall which allows them to

https://doi.org/10.1145/3429351.3431750
https://doi.org/10.1145/3429351.3431750
https://doi.org/10.1145/3429351.3431750

Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands Igor Zavalyshyn

IPCamera Motion
Detection App Code HTTP

Requestframe motion
event

motion
detected

App Graph

Sandbox

Figure 1. Element graph of a MotionAlert app.

specify flexible yet effective policies for controlling sensitive
sensor data flows within the apps they install. Finally, for
the mobile domain, we propose Flowverine [2], a system
for building privacy-aware mobile apps handling sensitive
IoT data on Android phones. Flowverine adapts the dataflow
programming model to a more complex Android program-
ming and runtime environment, and uses Aspect-Oriented
Programming (AOP) for dynamic taint analysis.

Complementary to these three systems, we introduce ad-
ditional techniques that aim to enhance the security and
privacy properties of IoT systems using N-version program-
ming and software hardening. Next, we provide more details
on the proposed dataflow programming model, developed
systems, and complementary security enhancing techniques.

2 Dataflow Programming Model
Our idea of a private-by-design IoT system is one where the
end users retain full control over their IoT device data, and
can decide themselves on how this data can be shared and
processed by various IoT apps and services. Unfortunately,
a permission-based access control model used in existing
IoT systems can only control the range of devices an app
can interact with, and fails to capture apps’ data process-
ing and sharing capabilities. As a result, the apps are often
overprivileged and may leak sensitive sensor data.
API based on element graphs:The dataflow programming
model aims to address the problem of permission-based sys-
tems. It provides easy-to-use programming abstractions for
IoT developers to build privacy-aware apps with all inter-
nal data flows made explicit and easy to analyze. The app
is implemented as a directed elements graph, in which ele-
ments represent functional units offered by the system itself
(as part of an API) or implemented by the app developer,
and the edges describe the only paths through which data
can flow within an app. With each element having a well-
defined specification, both in terms of interface and expected
behavior, such element-based app structure allows for sound
and efficient data flow tracking. To illustrate our program-
ming model, consider an element-graph of a MotionAlert
app at Figure 1. The app collects camera frames from an
IPCamera element, forwards those to a MotionDetection
element which in turn sends motion events to the AppCode
element whenever motion is detected. The AppCode element
is provided by the app developer and runs inside a sandbox to
prevent direct access to the camera. It sends a motion alert to
a security company via HTTPRequest. This app package will
then consist of a JSON file that describes the app’s element
graph, and the JavaScript code of AppCode element.

Allow Block

LivRoomCam

FrontDoorCam

AllCameras

Image

Video

Audio

Everything

IP Cameras

Source?

Anywhere

Data type?

Rule type?

Dropbox

Any

Web sites

Sink?

Anywhere

Wednesday
Day

When?

12h-14h
Time

(1)

(2)

(3) (4) (5)

Figure 2. Schematic representation of the UI workflow to specify
a privacy rule using dataflow model.

Policy specification and rule syntax: Since the app de-
scribed above requires access to both camera and the net-
work, the user will want to make sure that the app cannot
leak raw camera images to the security company. To pre-
vent that, he can specify a ‘block’ privacy policy rule with a
particular camera (e.g. LivRoomCam) selected as a source,
an Image data type, and the Internet sink (to denote any
web host). More concretely, a privacy policy consists of a
sequence of allow / block rules which are evaluated sequen-
tially and applied atomically by the underlying application
runtime. In general, the format of a rule is as follows:

allow | block ⟨data type list⟩ from ⟨source endpoint list⟩
to ⟨sink endpoint list⟩ [at ⟨time period list⟩]

The keywords “allow” or “block” indicate the rule type,
i.e., whether the rule allows or disallows the data flows
matched by the rule, respectively. The data type list indi-
cates one or multiple types of data to be matched. They can
be simple types, e.g., Video, or the wildcard Everything to indi-
cate all possible simple types. The keywords “from” and “to”
are followed by a list of source and sink endpoints, respec-
tively, that may specify individual devices, e.g., LivRoomCam,
types of devices, e.g., IPCamera to refer to all IP cameras,
or include wildcards, such as Anywhere to refer to any valid
endpoint. Optionally, it is possible to specify temporal restric-
tions by using the keyword “at” followed by a time period,
e.g., “12:00-14:00”, and one or multiple weekdays.
User interface for policy specification: To simplify the
process of policy rules specification, our dataflow model ex-
poses a simple UI that guides the user along a five step pro-
cess (see Figure 2) and allows to reason in terms of privacy-
sensitive/insensitive data flows the user wants to be blocked
or allowed. To create a new rule, he starts by selecting the
rule type, i.e., “allow” or “block” (1). Then, he picks the source
endpoints of such flows (2), tells what data types from that
source he wants to allow or block (3), indicates the desti-
nation endpoints (i.e., sinks) (4), and optionally provides a
temporal restriction for the rule (5). More sophisticated poli-
cies, e.g. based on device state or certain data values, can be
supported in the future, but must be carefully conceived as
they may increase the complexity of the UI.

Building Private-by-Design IoT Systems Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands

Data flow tracking and verification: To ensure that a
given app abides by the user-specified policy’s restrictions,
the app’s flow graph is then matched against the policy’s
rules, and the results are reported back to the user. An au-
tomatic verification of an app’s privacy properties allows
the end users to (1) determine what type of information is
released by a given app (e.g. to the Internet), and (2) assess at
install time whether such a release is acceptable or not. The
verification is performed by first creating a model of the app
flow graph (named flow graph model) using Prolog predicates
describing the app elements behavior, connections, and the
data types they operate with. The system then queries the
app model in order to track the propagation of sensitive data
inside the app, and determine the existence of illegitimate
data flows, i.e., those that violate the user-defined privacy
policy rules. For the MotionAlert app, the results would show
that only motion_detected events are sent to the Internet.
The app can then be safely installed.

3 HomePad: a Privacy-aware Smart Hub
HomePad [10] extends the architecture of current smart
home platforms with the ability to execute third-party IoT
apps at the edge. This is achieved by relying on a trusted hub
device that can both manage the local devices and provide a
platform for executing IoT apps without necessarily depend-
ing on the centralized cloud services. As a result, whenever
the functionality of an app does not strictly require the ship-
ment of sensor data to the cloud, the data can instead be
collected and processed locally, therefore reducing the risks
of data exposure and misuse at the remote cloud backend.

HomePad apps follow a dataflow programming model and
can be built using a rich set of API elements provided as
part of the platform. Using these elements HomePad apps
can perform numerous operations, e.g., interact with vari-
ous sensors and actuators, make network calls, and perform
various computations on sensor data (e.g., speech or face
recognition, voice synthesis, or data anonymization). The
end users may specify app-specific privacy policy rules and
verify those at app install time.

When a home app is installed on the hub, HomePad in-
stantiates element objects on the kernel runtime and sets
up connections between element instances so as to reflect
the flow graph specified in the app package. Each element
object can interact with a local system driver which serves
the specific requests of that particular element.
We implemented HomePad in Java and used it to test 20

IoT apps in an emulated IoT scenario. We then evaluated
HomePad’s performance, app programming effort, verifica-
tion effectiveness, and policy expressiveness. HomePad has
low performance overhead (< 6%) compared to standalone
app execution, has low entry-level for developers, can suc-
cessfully detect privacy violations, and its privacy policies
can express common users’ concerns.

Untrusted OS

PatrIoT Runtime

Cloud Host

Mobile
Phone

Smart Devices

App Store

A1

Code
Maintainer

PatrIoT
Image

Smart Apps
Cloud
Admin

Domain

A2 A3 A4

App
Pkg

SGX Enclave

Smart Home

Management
Mobile App

SCONE

Figure 3. System model of our private-by-design IoT platform.

4 PatrIoT: a Private-by-Design Platform
HomePad’s requirement for local data processing is essential
for user privacy, but may be too restrictive for apps that
require significant computing resources (e.g., machine learn-
ing). To this end, we present PatrIoT which extends dataflow
programming model and its privacy guarantees to the cloud
environment. Complementary to HomePad’s data protection
techniques, PatrIoT introduces new security measures that
prevent arbitrary access to sensor data by cloud providers
or any external attackers.

PatrIoT’s architecture is presented in Figure 3. To ensure
sensor data confidentiality and integrity protection, PatrIoT
runs inside a memory-isolated environment provided by the
Intel SGX secure enclaves, and exposes a hardened backend
service for managing IoT devices and hosting apps. With a
management app, the users may securely interact with Pa-
trIoT service and install the apps from an app store. The apps
run inside sandboxes, and can access sensor data based on
permissions and a global user-defined security policy. When
PatrIoT is bootstrapped at a cloud host, it runs a remote
attestation procedure to obtain proof of integrity and au-
thenticity. The default configuration is further protected by
sealed storage encryption and is verified and decrypted only
after successful attestation. The user may then start using
PatrIoT, connect devices and install apps.

We envision amodel where PatrIoT software is maintained
by a trustworthy code maintainer, which can be a single
reputable entity or a consortium, and released open source
to help detect potential code vulnerabilities. It can be shipped
in the form of a container or VM image ready to be deployed
on general-purpose cloud with SGX support (e.g., Microsoft
Azure’s CC [5]), or be offered as a service by cloud providers
to all security-conscious IoT users on a pay-per-use model.
For policy specification PatrIoT introduces the notion of

flowwall, in analogy to a “firewall”, for controlling sensitive
sensor data flows generated by third party apps. In contrast
to HomePad’s verification mechanism, a flowwall imple-
ments an information flow control (IFC) model that allows
users to: (i) reason about global data flows generated by their
connected devices rather than concentrating on individual
apps, and (ii) block or allow privacy-sensitive flows without
overwhelming them with too much information or level of
detail. Flowwall policies are specified once and for all the
individual devices or device types, and can be dynamically
changed by the user at any time.

Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands Igor Zavalyshyn

We built a prototype of PatrIoT by leveraging SCONE li-
brary OS, which allows us to deploy the PatrIoT backend as
a Docker container and run it inside an SGX enclave. PatrIoT
provides a JavaScript API and runs on top of Node.js. We
evaluated PatrIoT by emulating a setup with 10 different IoT
devices and 20 IoT apps. We were able to express a range of
privacy policies and validate their enforcement in PatrIoT.
45 participants of a usability study found PatrIoT to be easy
to use, and its policy rules to be useful for privacy protec-
tion. Performance wise, PatrIoT can sustain the typical smart
home traffic load, despite a significant SGX overhead (2K
inside vs. 9Kreq/s outside SGX), partially caused by the fact
that SCONE is not optimized for network-heavy services
(other systems, e.g., Graphene-SGX or Occlum might be bet-
ter alternatives). App execution times are less affected by
SGX constraints and are tightly dependent on each app’s
workload, ranging between 32 and 690 ms.

5 Flowverine: Secure IoT Apps on Android
As in smart home systems, leakage of personal data in a
mobile context can cause serious privacy breaches. Flow-
everine [2] addresses the needs of IoT app developers for
mobile platforms, e.g., Android, and their respective users.
For instance, a fitness-tracking app that reads the user’s heart
rate from a Fitbit fitness tracker must guarantee that this
information can never be shared with unauthorized parties
(similarly, e.g., to a contact tracing COVID-19 app). However,
ensuring the absence of bugs and security vulnerabilities
in the app code is in itself a difficult task, e.g., due to the
complexity of the Android API. Furthermore, third-party li-
braries (e.g., ad libs) included in the app, may have their own
vulnerabilities, or, worse, containmalicious code leaking user
data. Thus, it is important to have mechanisms that allow
both app developers and users to control sensitive data flows
within their apps, and consequently block those flows that
can lead to security or privacy violations. Unfortunately, de-
spite the security advancements in Android OS, information
flow control (IFC) mechanisms are not yet available.
To fill this gap, Flowverine allows app developers to cre-

ate secure-by-design privacy-aware Android apps. Similarly
to HomePad and PatrIoT, it builds upon the dataflow pro-
gramming model. The apps are structured as a graph of
Flowverine-specific elements that mediate access to the An-
droid native API. To prevent the app components from ac-
cessing Android API directly, app elements written by the
developer run inside sandboxes, and we use Aspect-Oriented
Programming (AOP) to intercept native Android API calls
and perform dynamic taint analysis. AOP precludes the need
to modify the Android OS, thus favoring compatibility.
By ensuring that an app can only generate information

flows explicitly declared in the app’s element graph, Flowver-
ine helps to prevent security breaches that may result from
programming errors or by the inclusion of malicious libraries.

Flowverine provides complimentary tooling support for val-
idating the information flows of a given app against an in-
formation flow control (IFC) policy using Prolog predicates.
Although for different contexts, IFC policies are useful to
both app developers and users. An app developer can specify
an IFC policy to validate the app compliance with the terms
of the service’s privacy policy and the data protection rules
imposed by law (e.g. GDPR). The user can then perform the
same validation or / and apply additional policy restrictions.
Our performance evaluation with a set of Android apps

shows that Flowverine has no noticeable impact to the user
experience. It was able to (1) prevent hidden sensitive data
flows, (2) allow for the strict privilege separation of multiple
independent flows within any given app, and (3) support the
main Android API programming abstractions.

6 Further Security Enhancements
Dataflow programming model relies on a trusted set of el-
ements. Nevertheless, complex elements may potentially
contain bugs. To address this issue, we perform an in-depth
study to assess whether N-version programming (NVP) can
be used to bootstrap trust in these elements [9]. We imple-
mented various privacy-sensitive elements, e.g., face and
speech recognition, data encryption and anonymization, and
tested them extensively in different N-version settings, and
with different merging mechanisms to resolve redundant
outputs of multiple element versions (refer to [9] for details).
Our study reveals that NVP has a great potential for practical
application and is viable to securing IoT software.

Software hardening is another approach used for securing
IoT components by adding a safety logic to detect faults and
minimize their impact. While there is a variety of hardening
techniques, it is hard to predict their impact on software
security and performance. We conducted a thorough anal-
ysis of common hardening techniques and evaluated their
effectiveness in preventing sensitive data leaks, general fault-
tolerance, and performance impact [11]. We offer a guideline
for IoT developers seeking to make their software secure,
and a tool for automatic software fault-tolerance evaluation.

7 Conclusions
We presented key design concepts for building private-by-
design IoT systems and showed how these concepts can be
applied in real-world scenarios. The users of such systems
obtain fine-grained control over their IoT devices’ sensor
data, and can express and enforce their privacy and security
preferences regarding data collection and sharing.
Acknowledgments: I thank the reviewers for their comments. I
also thank my supervisors Nuno Santos, Ramin Sadre and Axel
Legay for their continuous support and guidance. This work was
partially supported by national funds provided by Fundação para
a Ciência e a Tecnologia (FCT), via the UIDB/50021/2020 project,
and a CISCO research grant.

Building Private-by-Design IoT Systems Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands

References
[1] Adam Clark Estes. 2018. Yes, Your Amazon Echo Is an Ad Ma-

chine. https://gizmodo.com/yes-your-amazon-echo-is-an-ad-
machine-1821712916.

[2] Eduardo Gomes, Igor Zavalyshyn, Nuno Santos, João Silva, and Axel
Legay. 2020. Flowverine: Leveraging Dataflow Programming for Build-
ing Privacy-Sensitive Android Applications. In Proceedings of 19th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications (TrustCom) (to appear).

[3] Christine Hauser. 2018. Police Use Fitbit Data to Charge 90-Year-Old
Man in Stepdaughter’s Killing. https://www.nytimes.com/2018/10/03/
us/fitbit-murder-arrest.html.

[4] Jay McGregor. 2019. Here’s How Amazon’s Ring Doorbell Police
Partnership Affects You. https://www.forbes.com/sites/jaymcgregor/
2019/08/06/heres-how-amazons-ring-doorbell-police-partnership-
affects-you.

[5] Microsoft. 2020. Microsoft Azure Confidential Computing. https:
//azure.microsoft.com/en-us/solutions/confidential-compute/.

[6] Charlie Osborne. 2019. Amazon employees listen in to your conversa-
tions with Alexa. https://www.zdnet.com/article/amazon-employees-

are-listening-in-to-your-conversations-with-alexa/.
[7] Tara Seals. 2018. Amazon Sends 1,700 Alexa Voice Recordings to a

Random Person. https://threatpost.com/amazon-1700-alexa-voice-
recordings/140201/.

[8] Amanda Yeo. 2019. Data leak by IoT device maker Wyze exposes
personal information of 2.4 million people. https://mashable.com/
article/wyze-smart-home-data-leak-breach/.

[9] Igor Zavalyshyn, Nuno O Duarte, and Nuno Santos. 2018. An Extended
Case Study about Securing Smart Home Hubs through N-version
Programming.. In Proceedings of ICETE (2). 289–300.

[10] Igor Zavalyshyn, Nuno O Duarte, and Nuno Santos. 2018. HomePad:
A privacy-aware smart hub for home environments. In Proceedings
of The Third IEEE/ACM Symposium on Edge Computing (SEC). IEEE,
58–73.

[11] Igor Zavalyshyn, Thomas Given-Wilson, Axel Legay, and Ramin Sadre.
2020. Brief Announcement: Effectiveness of Code Hardening for Fault-
Tolerant IoT Software. In Proceedings of 22nd International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS) (to
appear).

https://gizmodo.com/yes-your-amazon-echo-is-an-ad-machine-1821712916
https://gizmodo.com/yes-your-amazon-echo-is-an-ad-machine-1821712916
https://www.nytimes.com/2018/10/03/us/fitbit-murder-arrest.html
https://www.nytimes.com/2018/10/03/us/fitbit-murder-arrest.html
https://www.forbes.com/sites/jaymcgregor/2019/08/06/heres-how-amazons-ring-doorbell-police-partnership-affects-you
https://www.forbes.com/sites/jaymcgregor/2019/08/06/heres-how-amazons-ring-doorbell-police-partnership-affects-you
https://www.forbes.com/sites/jaymcgregor/2019/08/06/heres-how-amazons-ring-doorbell-police-partnership-affects-you
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.zdnet.com/article/amazon-employees-are-listening-in-to-your-conversations-with-alexa/
https://www.zdnet.com/article/amazon-employees-are-listening-in-to-your-conversations-with-alexa/
https://threatpost.com/amazon-1700-alexa-voice-recordings/140201/
https://threatpost.com/amazon-1700-alexa-voice-recordings/140201/
https://mashable.com/article/wyze-smart-home-data-leak-breach/
https://mashable.com/article/wyze-smart-home-data-leak-breach/

	Abstract
	1 Introduction
	2 Dataflow Programming Model
	3 HomePad: a Privacy-aware Smart Hub
	4 PatrIoT: a Private-by-Design Platform
	5 Flowverine: Secure IoT Apps on Android
	6 Further Security Enhancements
	7 Conclusions
	References

