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Abstract—The adoption of smart home devices is hindered
today by the privacy concerns users have regarding their
personal data. Since these devices depend on remote service
providers, users remain oblivious about how and when their
data is disclosed and processed. In this paper we present
HomePad, a privacy-aware smart hub for home environments.
Our system aims to empower users with the ability to determine
how applications can access and process sensitive data collected
by smart devices (e.g., web cams) and to prevent applications
from executing unless they abide by the privacy restrictions
specified by the users. To achieve this goal, HomePad applica-
tions are implemented as directed graphs of elements, which
consist of instances of functions that process data in isolation.
By modeling elements and the flow graph using Prolog rules,
HomePad allows for automatic verification of the application’s
flow graph against user-defined privacy policies. Homepad
incurs a negligible performance overhead, requires a modest
programming effort, and provides flexible policy support to
address the privacy concerns most commonly expressed by
potential smart device consumers.

Keywords-smart home; privacy; internet of things; data flow
analysis; smart home devices.

I. INTRODUCTION

One of the biggest barriers to the widespread adoption
of smart devices for home environments involves concerns
about privacy. Today, smart devices compatible with IoT
frameworks such as Samsung SmartThings [1] or Apple
HomeKit [2] depend on Internet connectivity in order to
provide useful service. Numerous smart home devices, from
smart lights and locks to thermostats and cameras constantly
stream their sensor data to service providers’ remote servers
for processing, backup, and remote access and control.
However, end-users have little knowledge or control about
how much or what kind of data is collected by service
providers, nor do users know for what purpose the collected
data will be used or with whom it will be shared.

Moreover, the terms of use of IoT services tend to be
extremely aggressive. For example, the following can be
read from Samsung’s SmartThings terms of use, effective
since April 2017: “you [the user] hereby do and shall grant
SmartThings a worldwide, non-exclusive, perpetual, irrevo-
cable, royalty-free, fully paid, sublicensable and transferable
license to use, modify, reproduce, distribute, share, prepare
derivative works of, display, perform, and otherwise fully
exploit the User Submissions and Device Data in connection

with the SmartThings’s Services” [3]. In practice, users have
to yield full control of their data if they want to benefit from
SmartThings’ services.

In this work, we aim to revisit the design of current
smart home platforms so as to provide end-users with greater
transparency and control over how their data is collected and
used. While this seems to be disadvantageous for service
providers, we argue that such is not the case for two main
reasons. First, it would allow them to reach a large market
of potential privacy-wary IoT consumers. In fact, a recent
study [4] reported that 87% of US consumers “are concerned
about their personal information being collected and used in
ways they were unaware of”; 27% mentioned this concern
as the “main reason they do not currently own a smart
device”. Unfortunately, such fears are all too well justified,
backed up by anecdotal cases of stealthy data theft [5], [6],
[7] or undisclosed data sharing [8], [9]. Second, service
providers face increasing pressure from many countries to
uphold strict personal data handling policies. Notably in
Europe, since May 2018, the GDPR regulations [10] require
service providers to pay formidable penalty fees in case of
personal data misuse or user privacy violations. However,
their common practice of aggressively collecting raw sensor
data and shipping it down to their servers can only increase
such risks.

This paper presents HomePad, a privacy-aware hub for
home environments. Similarly to recently proposed sys-
tems [11], [12], [13], HomePad extends the architecture of
current smart home platforms with the ability to execute IoT
applications at the edge. This is achieved by relying on a
trusted hub device that can both manage the local devices
and provide a local platform for executing IoT apps without
necessarily depending on the service provider’s centralized
services. As a result, whenever the functionality of an app
does not strictly require the shipment of data onto the cloud,
the sensor data can be collected and processed locally by the
applications, therefore reducing the risks of data exposure
and misuse at the service provider’s backend.

To provide end-users with fine-grained control over the
way these untrusted applications access and process sen-
sor data, HomePad introduces two novel features. First,
HomePad forces applications to make all information flows
explicit. It employs a technique that allows to keep track



not only (1) of how the sensor data flows within the
applications, but also (2) of the semantics of the data as
it gets processed inside the application. This allows us, for
example, to determine if an application that takes a photo
from a camera sends that photo to the service provider
in its raw form, or has instead sanitized the photo by
running it through a privacy-preserving blurring algorithm.
Our technique consists of exposing a programming model
in which HomePad applications are implemented as directed
graph of elements, which consist of interlinked instances of
special functional units that can be put together in order to
build applications.

A second noteworthy feature is that HomePad provides
a mechanism that allows users to easily examine whether a
given application has the ability to violate specific privacy
concerns expressed in a user-defined policy. For example,
the user can verify whether an application with access to a
webcam has the ability to send raw image data to the cloud
or not. This verification is performed at install time so that
the user can refuse to install the application if it violates such
conditions. To implement this feature, HomePad generates
a formal model of the application’s element graph in Prolog
rules, and then issues a set of queries to determine the
existence of data flows that violate the user’s privacy policy.

We implemented HomePad and used it to test several use
case applications. From our evaluation of the system, we
found that HomePad was able to effectively detect illegiti-
mate data flows and incures low performance overheads.

Next, we provide an overview of our motivation, approach
and goals. In Section III, we introduce the HomePad hub and
its API. We explain the concepts of dataflow programming
model and the verification techniques in Sections IV and V.
We then introduce the design concepts and implementation
details of the HomePad hub in Sections VI and VII. We
continue with the evaluation results in Section VIII. Finally,
in Section IX we provide a security analysis of HomePad
and describe its current limitations. We conclude with Sec-
tion XI.

II. GOALS AND ASSUMPTIONS

The main goal of this work is to build a programmable
hub system to allow for controlling smart home devices
in a privacy-aware manner for homeowners. Following the
current trends of mobile and web platforms, our hub system
must provide an “appified” platform enabling third-party
developers to write applications that can access the smart
home devices (both for collecting sensor information or
issuing control commands), process sensor data, or even
issue requests to Internet services.

From a privacy perspective, our system must be able to
make users aware of how their sensor data is accessed and
processed by the apps, and eventually prevent the installation
of apps that the homeowner may deem to be too privacy-
invasive. For example, a homeowner may be comfortable
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Figure 1. HomePad deployment.

with a notification to the cloud when motion is detected
by her front door camera, but not with sending raw image
data extracted from that camera. Our hub system must
provide mechanisms to differentiate flows tolerable by the
homeowner from those that are not.

Note also that we are not worried about preserving the
compatibility with existing IoT platforms, such as Samsung
SmartThings [1] or Apple HomeKit [2]. Nevertheless, we
envision that these platforms can be easily integrated with
our hub device by exposing REST APIs accessible to the
hub. It is also not our goal to be fully compatible with
existing IoT devices. Nevertheless, we assume that the IoT
devices managed by HomePad have a public interface that
allows for the communication between them and the hub.

Threat model: In designing our “appified” home hub, our
main adversary consists of potentially buggy or malicious
applications aiming to extract privacy-sensitive information
from home sensors. An application may try to attain this
goal by leveraging legitimate operations provided by the
hub API. However, we assume that the hub platform itself
is part of the trusted computing base. In particular, we
do not focus on attacks which try to exploit bugs in the
hub software or hardware, or attacks aimed at leveraging
existing vulnerabilities in the smart devices themselves. We
assume that the hub hardware is correct, that the software
that implements the hub system is correct, and that potential
software updates to the hub have been implemented and
signed by trustworthy entities. We focus only on attacks that
aim to exfiltrate sensitive data extracted from smart devices
connected to the hub. Consequently, we do not prevent
privacy breaches from rogue devices deployed at home that
can connect to the Internet bypassing our hub. In this paper,
we do not protect against low-bandwidth side-channels.

III. OVERVIEW

Figure 1 represents a HomePad deployment in a home
environment. HomePad consists essentially of a smart hub
that controls access to all smart devices at home and provides
a platform for the execution of apps, called home apps.
The HomePad hub provides an administration interface
through which the homeowner can access the hub directly
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Figure 2. Element that converts a PNG image to JPG.

or tunneled through a proxy and manage it, e.g., to install or
uninstall home apps, register new smart devices, supervise
the execution state of home apps, install hub software
extensions, or set up privacy policies.

Through the HomePad API, a home app can perform
numerous operations, such as collecting data from sensor
devices (e.g., audio from microphones, images from cam-
eras), sending data to actuator sensors (e.g., audio signal
to speakers, or video streams to displays), accessing In-
ternet services, and performing various data computations
(e.g., voice or face recognition, voice synthesis, or data
anonymization). Figure 1 represents a simple home app—
TellWeather—which listens for an audio command (e.g.,
“Tell weather in LA”), issues an HTTP request to a weather
service, converts the response into audio signal, and forwards
it to a speaker.

HomePad was designed from scratch with privacy-
awareness in mind. There are two main features that con-
tribute to attaining this goal. First, the HomePad API adopts
a dataflow programming model that forces applications to
make explicit both all internal data flows and all internal
data transformations. As a result, HomePad contributes to
making applications more transparent with respect to how
they access and process user data. Second, HomePad in-
cludes a mechanism to automatically analyze how and what
information flows within a home app and check the presence
of invalid flows as specified in the privacy policy defined by
the homeowner. This end is achieved by generating a Prolog
model of the home app’s information flow graph and per-
forming relevant queries based on the privacy policy, which
is also specified as simple Prolog rules. Next, we describe
both these features in more detail in independent sections,
and then present the HomePad design in Section VI.

IV. DATAFLOW PROGRAMMING MODEL

This section presents how HomePad applications are writ-
ten, and shows this programming model’s expressiveness,
allowing home apps to be built in a privacy-aware manner.

A. Elements

A HomePad application consists of a directed graph
whose nodes are called elements. An element is a functional
unit that can be executed on the hub. The graph edges repre-
sent a possible path for data transfer between the connected
elements. An element has four important properties:

FromCamera(room,1sec) ToCloud(alice@google)

Figure 3. Sample motion detector app (version 1).

• Element class: Each element has an associated piece of
code which determines its behavior. On the hub, each
element is an instance of that code (e.g., of a Java class).

• Ports: An element can have any number of input or out-
put ports, which can have different semantic meanings.
A message at an input port causes the element code
to execute; at the same time, a message may or may
not be fired to the output port. Elements can optionally
have an error port which is used by the hub to output
internal exceptions and stack traces. Each port type is
denoted with a different notation (see Figure 2) and is
statically typed.

• Parameter string: Element classes may optionally
support parameters to initialize per-element state and
configure the element behavior.

• Element rules: An element must be accompanied by
Prolog rules that specify the (abstract) types of data that
can be sent as output.

Figure 2 represents a simple element, named Encoder,
which converts images from PNG to JPG. The input port
receives the PNG image and the output port sends the
resulting JPG image. The file format is predefined in the
parameter string. The output rule reflects this transformation
as a Prolog rule. These rules are used in HomePad for
privacy verification purposes, and are distributed along with
the element class package. Also note that our element nota-
tion was inspired by the notation used for programming the
Click modular router [14]. We adapted and extended Click’s
notation accordingly, by adding error ports and output rules.

B. Flow graph

Elements can be coupled together to form a directed
graph, which we call flow graph. They can be connected by
linking compatible input and output ports of matching data
type. A flow graph makes information flow explicit across
elements and can be used to fully describe a HomePad app.

Figure 3 represents the flow graph of a simple application
aimed at detecting movement in Alice’s bedroom. Element
FromCamera takes photos from a stationary camera in Al-
ice’s bedroom, at the rate of one picture per second. Then
it sends these pictures to element ToCloud, which internally
issues HTTP requests to upload them to a cloud service
hosted by Google. This cloud service runs a motion detection
algorithm that analyzes differences between consecutive
frames and fires a notification to the user if differences occur.
(For the sake of simplicity, assume that the camera has no
built-in motion detection capability.)

To execute this application inside a running hub, Home-
Pad instantiates each element of the flow graph as a single
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Figure 4. Sample motion detector app (version 2).

object and establishes an internal communication channel
responsible for forwarding the messages between these ele-
ments according to the element connections as specified by
the flow graph; no other data flows are allowed between
elements other than those explicitly declared in the flow
graph. Thus, from Figure 3 we see that camera frames are
produced by FromCamera, which acts as a data source, and
from there flow down to ToCloud, which acts as a data
sink. To interact with the camera(s) and network interfaces,
element objects use internal hub functions provided by
HomePad drivers.

C. Push and pull connection types

In the type of element connection described so far, an
element pushes data from its output port to the input port of
the downstream element (see Figure 3 in which FromCamera
sends incoming camera pictures to ToCloud). We say that
elements are linked by a push connection. In other cases,
elements must retrieve data synchronously from another
element and process it before issuing an output. To address
this need, elements can be connected by pull connections.

Figure 4 illustrates both connection types in the flow graph
of a more complex version of the motion detection app
presented previously. One major change is that instead of up-
loading all pictures to Google, the motion detection function
is implemented locally at the hub by element MDetector. This
element executes every time it receives a new frame from
the input push connection, and keeps comparing incoming
frames in order to detect any differences; if differences exist
it outputs a “motion” event which is forwarded to element
ToCloud, which uploads a notification to the cloud service.

This version also introduces element Switch, which allows
the homeowner to turn the motion detection service on/off.
Switch keeps track of an option (“on” or “off”) selected by
the hub administrator. MDetector must be able to retrieve
the Switch state after receiving a new frame and decide
on the output based on that result: if the state is “on”,
then MDetector sends “motion” events to cloud, otherwise
no events are sent. To read the switch state synchronously,
MDetector links the output port of Switch to its input port
using a pull connection. To differentiate push from pull
connections, we color them in black and white, respectively
(see Figure 4).
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Figure 5. Flow graph of the FaceDoor app.

D. Untrusted elements

Each element implements a specific functional unit and
can be considered to be part of the HomePad platform.
HomePad supports the third-party development of new el-
ements that can be incorporated into the hub as platform
extensions (plugins). Since built-in elements are part of
the trusted computing base, we call them trusted elements.
Application developers can also write app-specific elements
to be shipped along with the flow graph and instantiated on
the hub. Because code of such elements cannot be deemed
to be correct, we call them untrusted elements.

Figure 5 illustrates an example of an application that uses
both trusted and untrusted elements, colored respectively in
white and grey. This application is named FaceDoor and
aims to automatically unlock the front door if the presence
of a family member is detected through the camera installed
at the main entrance. It starts by reading pictures from
the camera (FromCamera), and sending them to a face
recognition element (FaceRec). If the face recognition is
successful, FaceRec sends the feature vector of the identified
person to the Authorizer which checks if that person is a
family member. If not, no output is generated. Otherwise,
Authorizer sends a “match” event (without including the
identity of the person), to the untrusted element provided
by the app. This element— FaceDoorMain—sends an unlock
command to the DoorLock element, waits for a response,
and notifies the cloud service. If an error occurs in either
FaceDoorMain or ToCloud, the app logs it using Logger.

The untrusted element FaceDoorMain is necessary to im-
plement a piece of logic specific to the app. To enforce
proper protection against buggy or malicious untrusted el-
ements, HomePad instantiates them inside individual sand-
boxes such that they can communicate with the outer world
only through the element’s input and output ports.
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Figure 6. Hub configuration with multiple apps.

E. Hub configurations

The previous sections have discussed in detail how to
implement a single application as a single flow graph. In
order to host multiple applications, HomePad must not only
allow multiple independent flow graphs to coexist, one for
each application, but also allow applications to interact with
each other and with global system services. Furthermore,
it is necessary to ensure that applications cannot interfere
with each other, e.g., by modifying each other’s flow graphs.
Moreover, HomePad must enforce strict compliance with the
homeowner’s privacy preferences when (un)installing apps.

To address these requirements, first, we extend the notion
of flow graph to comprise not just a single application
but the entire hub configuration. The hub configuration is
represented by a fully connected flow graph that can be
decomposed into two types of subgraphs: system subgraphs
and application subgraphs. The former implement system-
wide functions (e.g., event bus), and the latter represent
installed applications. Second, installing (or removing) an
application consists of patching the hub configuration so
as to connect to it (or disconnect from it) the respective
application subgraph. To ensure correct behavior, the con-
nection of an application subgraph cannot be performed
arbitrarily, but requires linking specific elements of both ap-
plication subgraph and system subgraphs. Third, for security
reasons, HomePad assigns principal IDs to subgraphs and
defines connection permissions to restrict modifications to
the structure of subgraphs (e.g., to prevent the installation
of an application from tampering with the flow graph of
another application). HomePad assigns the principal ID 0 to
the system subgraph, and a new principal ID (>0) to each
application subgraph. As a general protection rule, HomePad

1 import homepad.∗
2 import homepad.elements.trusted.∗
3

4 class FaceDoorMain extends UntrustedElement {
5 def initialize() {
6 // specify all ports of the FaceDoorMain element interface
7 port name:"auth", type:Authorizer.class, io:"in", connector:"push"
8 port name:"doorlock",type:DoorLock.class,io:"in",connector:"pull"
9 port name:"cloud", type:ToCloud.class, io:"out", connector:"push"

10 port name:"logger", type:Logger.class, io:"out", connector:"push"
11

12 // specify the handler function associated to the push input auth
13 inputhandler("auth") {
14 if (ref("doorlock").command("unlock"))
15 ref("cloud").command("post", ref("auth").evt("id") +
16 + "arrived!")
17 ref("logger").command("write", "Door unlock event.")
18 }
19 }
20 }
21

22 flowgraph {
23 // specify all seven element instances of the flowgraph
24 def fromcamera = new FromCamera("frontdoor")
25 def facerec = new FaceRec("facedb")
26 def auth = new Authorizer("authlist")
27 def doorlock = new DoorLock("frontdoor")
28 def facedoor = new FaceDoorMain()
29 def tocloud = new ToCloud("alice@google")
30 def logger = new Logger()
31

32 // specify the connectors of the flowgraph
33 from fromcamera to facerec
34 from facerec to auth
35 from auth to inport: "auth" facedoor
36 from doorlock to inport: "doorlock" facedoor
37 from outport: "cloud" facedoor to tocloud
38 from outport: "logger" facedoor to logger
39 }

Listing 1. Sample code of the FaceDoor app.

does not allow to interconnect elements of subgraphs with
different IDs. However, connection permissions can override
this rule.

To illustrate these concepts, consider the hub configuration
depicted in Figure 6. It provides a common voice-activated
user interface, through which the user can send instructions
to applications installed on the hub (elements FromAudio
and SpeechToText). Applications can provide audio feed-
back to the user by leveraging elements TextToSpeech and
ToSpeaker. The hub relies on a global AppManager element
to route the voice commands to each application. Figure 6
shows two applications installed: TellWeather, which issues
a web service request to determine the current weather, and
LightsControl, which can turn on/off the lights.

F. Programming model

HomePad provides a simple programming interface for
writing applications. The programming interface is based
upon a domain specific language (DSL) implemented in the
Groovy programming language. To illustrate it, Listing 1
shows the pseudocode of the FaceDoor application repre-
sented by the flow graph depicted in Figure 5. Essentially,
to implement this application, the developer must declare
the element instances (lines 24-30) and element connectors
(lines 33-38) of the application’s flow graph. The trusted



elements are instantiated based on built-in classes or ex-
tensions to the HomePad API (e.g., FromCamera, ToCloud,
etc.) which must be imported into the program. Untrusted
elements must be written by the developer as independent
classes, in this example the FaceDoorMain element is im-
plemented by a homonym class. To specify an untrusted
element, it is necessary to declare its ports (lines 7-10) and
input port handlers (lines 13-18). From our experience, the
effort of writing HomePad applications is comparable to the
effort of writing applications for the popular SmartThings
IoT framework, whose API is also based on a DSL devel-
oped in Groovy.

V. VERIFICATION OF PRIVACY PROPERTIES

Section IV presented two simple versions of a motion
detector app that implement a similar functionality, but offer
different levels of privacy protection. In version 1, since the
camera pictures are streamed to the cloud, the cloud provider
has access to the raw picture data (see Figure 3). Version
2 performs most of the processing at the hub endpoint and
simply notifies the cloud service about the occurrence of
motion events (see Figure 4). As a result, version 2 is more
privacy friendly for the user because less information is
released to the cloud provider. The question is then how can
users determine whether a given app satisfies their privacy
requirements in a user-friendly manner.

To address this question, HomePad allows for the au-
tomatic verification of an application’s privacy properties.
In particular, it allows users to (1) determine what type
of information is released by a given application, and (2)
assess beforehand whether the type of information released
by the application is acceptable to the user. The verification
is performed by first creating a model of the application
flow graph in Prolog (named flow graph model), and then
issuing queries to determine the existence of illegitimate
data flows. A data flow is illegitimate if it violates the
conditions specified in a privacy policy provided by the
homeowner. A privacy policy consists of one or more Prolog
rules that specify disallowed flows of specific data types
(e.g., a camera frame) to specific data sinks (e.g., the ToCloud
element). Next, we explain how the flow graph model is
generated, and in Section V-B we cover the main steps for
the verification process.

A. Flow graph formal modeling

To create a flow graph model, HomePad only needs to
analyze the flow graph of the application. From that analysis,
it generates a set of facts and rules describing the elements
the application depends on, their functions, connections, and
the data types they operate with. These facts and rules are
then written to a file, which will be provided to Prolog in
the verification process. The generation of this file entails
three steps:

1 el(fromcamera).
2 el(tocloud).
3 el(switch).
4 con(el(fromcamera), el(mdetector)).
5 con(el(mdetector), el(tocloud)).
6 con(el(switch), el(mdetector)).

Listing 2. Model of flow graph version 2.

1. Model the flow graph structure: HomePad begins to
model the flow graph of an application by generating a
set of facts in Prolog that represent the elements and the
connections of the application’s graph. The general format
of these facts is represented by facts F1 and F2:

F1 → el(x).
F2 → con(el(x), el(y)).

Fact F1 declares x to be an element of the graph,
and fact F2 declares a connection from element x to el-
ement y. When applied to version 1 of the motion de-
tector application (see Figure 3), HomePad generates two
F1 facts (“el(fromcamera).” and “el(tocloud).”) and one F2

fact (“con(el(fromcamera), el(tocloud)).”). On the other hand,
version 2 is modeled by three elements and three connections
as shown in Listing 2 (see Figure 4).

2. Model the behavior of trusted elements: The next step is
to model how each element generates its outputs. Typically,
an output is a function of the element’s inputs and / or
of the element’s internal behavior. Since this function is
dependent on the specific implementation of the element,
to model element behavior, HomePad requires that each
element is associated with its corresponding Prolog rules.
These rules express how the element outputs are produced
and the possible dependencies of these outputs from the
element inputs. They are termed element rules and are
provided to HomePad as part of the application package
(see Section IV-A). When the application is installed, the
HomePad hub keeps a repository of all the element rules
declared in the system. When creating a flow graph model,
HomePad retrieves the rules of the elements used by the
application and includes these rules in the model file.
Table I lists simple output rules for the elements used in
the application examples presented in this paper. In general,
element rules take the following form:

R1 → out(el(x), data(tout(y))) :- in(el(x), data(tin(y))).

This rule states that the output data of element x is
defined as tout(y) and depends on the input data tin(y).
Informally, R1 indicates that an element will produce a
declared output as long as a given input is provided. The
operator “:-” is used to define Prolog clauses. The more
formal declarative interpretation of this Prolog clause is:
“Given X and Y, an output typed tout(y) is produced from



Table I
SAMPLE RULES OF HOMEPAD ELEMENTS.

Element name Element output rules

FaceRec out(el(facerec), data(frfunc(X))) :-
in(el(facerec), data(img(X))).

FromCamera out(el(fromcamera), data(img(frame))).

MDetector out(el(mdetector), data(mdfunc(X))) :-
in(el(mdetector), data(img(X))),
in(el(mdetector), data(state(on))).

Switch out(el(switch), data(state(on))).
out(el(switch), data(state(off))).

element X, if an input typed tin(y) reaches that element”.
Note, however, that each element may have a variant of this
rule, or may even require more than a single rule. Consider
now the examples in Table I. Regarding FromCamera and
Switch, out rules indicate the type of data returned by the
element: an image representing a frame from the camera
(img(frame)), and the state of the switch element (state(on)
and state(off)). In the switch element, since two outputs are
possible, it is necessary to specify two rules, one for each
output. Elements MDetector and FaceRec produce an output
that is a function (mdfunc, frfunc) of their respective inputs
(frame). The element ToCloud introduced in Figures 3 and 4
(and omitted in the table) does not require specific rules
because it has no output ports.

3. Model the behavior of untrusted elements: Just like
in the case of trusted elements, untrusted elements must
also be accompanied by Prolog rules that characterize the
type of data output by the element. However, the application
programmer cannot be relied upon to write these rules.
As a result, HomePad defines a common element rule for
all untrusted elements. We take a conservative approach
in modeling such elements by assuming that an untrusted
element will try to forward all input data to the output ports
in an attempt to leak as much data as possible. Thus, we
can model an untrusted element using two rules:

R2 → bad(el(x)).
R3 → out(el(X), data(Y)) :- bad(el(X)), in(el(X), data(Y)).

Rule R2 is used by HomePad do declare a specific element
x as “bad”. This operation is performed at the time when the
application is installed on the hub. At this time, HomePad
sweeps the flow graph, detects additional untrusted elements,
and extends the flow graph model with R2 in which x is
replaced by the name of the element. This operation is
performed for every untrusted element in the flow graph.
HomePad then adds rule R3 which, when read from right
to left, says that if an element X is untrusted (denoted by
“bad”) then all its inputs might be forwarded to the outputs.
In the FaceDoor app, HomePad would automatically mark
FaceDoorMain as bad.

To prevent a malicious untrusted element from bypassing
rules R2 and R3 by memorizing stale inputs in internal
memory and forwarding them to the output in the future,
HomePad forces each untrusted element to be stateless, i.e.,
each input is processed completely independently and the
element cannot internally store state that can be passed over
across different invocations of the element. If the app needs
to store state persistently, it requires the incorporation of
specific storage elements (see Section VI-B) in order to make
all information flows appear explicitly on the flow graph.

4. Model the connection behavior: Now that the structure
of the flow graph and the behavior of each element has
been modeled, the last missing piece is to model the be-
havior of the graph’s connections, which are responsible for
propagating the outputs of upstream elements to the inputs
of downstream elements. To model this behavior, HomePad
adds rule R4 to the flow graph model:

R4 → in(el(X), Y) :- con(el(Z), el(X)), out(el(Z), Y).

Again, this rule should be read from right to left. It says
that if an element Z outputs a data item Y and there exists
a connection between Z and an element X, then X receives
data Y as input. With R4 the behavior of the flow graph is
now completely specified. It is then possible to proceed with
the automatic verification of the app’s privacy properties as
explained next.

B. Information flow tracking and privacy policies

The flow graph model automatically generated by Home-
Pad allows the user to verify the privacy properties of the
respective application. Essentially, our approach for privacy
verification entails issuing specific Prolog queries to the flow
graph model in order to track how information flows within
the application. To this end, HomePad relies on a simple but
powerful rule:

R5 → flows(X,Y) :- in(el(Y), data(X)).

This rule allows to determine if a specific piece of data
X will ever be able to flow within the application until
it reaches element Y. To assess if this statement is true,
R5 checks if data X can eventually appear at the input of
element Y. This rule can be used in HomePad for two main
purposes: application profiling and policy enforcement.

Application profiling: This operation allows the user to
analyze the flow graph of an application and learn how the
information can flow within the application by determining,
(1) what kind of information can be accessed by the appli-
cation, (2) where information can be obtained from, and (3)
where information can be propagated to. The flows rule can
be instrumental for this purpose. For example, considering
the motion application version 2 (see Figure 4), in order to



determine if the raw frame data from FromCamera reaches
MDetector and ToCloud, we can issue two R5 queries:

1. ?- flows(img(frame),mdetector).
2. true.
3. ?- flows(img(frame),tocloud).

4. false.

The results of these queries mean that the raw frame data
can arrive at the motion detector element (line 2), but not at
the cloud upload element (line 4). From here we see that this
rule can help query whether a particularly sensitive piece of
data arrives at a given element. But it can also be used for
performing more powerful queries:

5. ?- bagof(X, flows(X,mdetector), L).
6. L = [img(frame), state(on), state(off)].

7. ?- bagof(X, flows(mdfunc(frame),X), L).

8. L = [tocloud].

In the first query (line 5), we aim to determine all data
types that can arrive at a particular element, namely the
motion detector element. A Prolog bagof() predicate is used
for this query in order to obtain a list, or a “bag”, of data
types that satisfy a given condition. The result is shown in
line 6, and consists of a list that comprises the raw frame
data, and the state of the switch (on or off). By observing
both Figure 4 and Table I, we can confirm that this is the
expected result. The second query (line 7) queries for all
elements that can have access to a particular data type,
in this case which elements can access the motion event
mdfunc(frame) returned by MDetector. The result is a list
that includes a single element, ToCloud, as expected.

Policy assessment: While application profiling allows for
generating “privacy reports” of applications, policy assess-
ment aims to ensure that an application can be installed only
if it satisfies the privacy restrictions as specified in a policy.
A privacy policy is provided by the homeowner and consists
of a list of flows facts which must hold true when checked
against an application’s flow graph. The HomePad hub runs
this check at application installation time: if the test fails,
installation aborts. Consider, e.g., the privacy policy P1:

P1 → flows(img(frame),tocloud).

This policy states that raw camera data (img(frame)) is not
allowed to flow to the cloud (i.e., element ToCloud). As a
result, if the homeowner attempts to install the version 1 of
the motion detection application (see Figure 3), then P1 eval-
uates to true, and the installation will be aborted. In contrast,
version 2 of this application satisfies this requirement, and
therefore can be safely installed on the hub. To facilitate the
writing of privacy policies and profiling queries, HomePad
provides hub administrators with a user-friendly interface
to compose them out of predefined Prolog rules. Although

more intuitive solutions can be applied to the specification of
user privacy policies, we currently allow for users to specify
such policies only through a mobile application.

Policy enforcement: Policy enforcement aims at addressing
user privacy preference changes. More specifically, the cases
when a user modifies his initial privacy preferences and by
doing so enables a data flow which was not allowed at
the time of the app’s installation. In this case, HomePad
automatically checks if all currently installed applications
are compliant with the new privacy preferences. HomePad
flags the apps failing this check and halts their execution
temporarily. The user will then have to decide what to do:
either modify the privacy preferences or uninstall the app.

Taking the first version of the motion detector app as an
example, consider the case where Alice wishes to continue
receiving motion notifications from 5pm to 7pm, before
arriving from work and after her son arrives from school,
but this time she wishes the raw video data to be blurred,
so that no video of her son is sent to the cloud. In order to
support such policies, the specification of privacy policy is
extended from P1 to P2:

P2 → rtime(flows(img(frame),tocloud),
excep(mode(blur),time(17,19))).

This enhanced policy, or runtime rule, joins flow rules
with exception rules (rtime(flows(...), excep(...))). Exception
rules complement flow rules with both timing constraints
that restrict the period when a given data flow can occur, as
well as the data mode, i.e., a transformation needed to be
performed on the data before it is sent to the cloud. In this
particular policy, video data would only be sent to the cloud
if it was blurred (mode(blur)), and only during a specific
time period (time(17,19)). This is achieved by modifying the
data flow graph of the application and adding restricting
trusted elements (FaceBlur and a TimeSwitch) to the data
flow path (see Section VI-B for more details on these
elements). HomePad applies such constraints at runtime each
time the application is executed. Both flow and exception
rules allow for a great flexibility in the specification of
policies that express the current users’ privacy concerns.
In Section VIII-E we show how such an approach can be
successfully used in common smart home scenarios.

VI. DESIGN

This section presents architectural details of the HomePad
hub, which allows for the execution of home applications
and verification of their privacy properties.

A. Architecture

In HomePad, there are several involved parties. Users
interact with home apps via apps’ own interfaces. The hub
administrator (typically the homeowner) maintains the hub,
e.g., by installing or removing apps and elements, setting up
privacy policies, performing privacy verification operations.
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Figure 7. HomePad hub architecture.

Application developers create HomePad applications, which
involves writing a manifest file specifying the flow graph and
the code of untrusted elements, compiling, and packaging
the code binaries and manifest. Element developers imple-
ment new elements. To this end, they must write the element
code and the output Prolog rule. Platform developers write
and maintain the code of the HomePad core system installed
in the hub. We envision HomePad core and elements to be
developed by an open source community.

Figure 7 represents the main software components of
the HomePad system running on the hub. The model
checker manages a repository of Prolog rules and exposes
a management interface to allow for privacy verification
of applications. This repository contains: the output rules
of elements installed in the system, the models of all
applications installed in the system, and the privacy rules
defined by the hub administrator. Before installing an appli-
cation, the administrator can upload the flow graph of the
application to the system, and check if it is compliant with
the privacy policy. If not, the installation aborts, otherwise,
the application package is deployed into the system.

The configuration manager maintains the installed appli-
cations, offers a management interface to the hub adminis-
trator, and supervises the execution lifecycle of applications.
When a home application is installed on the hub, the
configuration manager instantiates element objects on the
kernel runtime and sets up connections between instances so
as to reflect the flow graph specified in the home application
package. Each element object can interact with a local
driver which serves the specific requests of that particular
element. As for untrusted elements, the runtime kernel runs
the respective app code inside individual sandboxes. The
sandboxing mechanism prevents the use of shared memory
and thus leaking information across elements.

Elements and drivers together implement the app func-
tionality by firing events and routing them internally through
the event bus. Figure 7 illustrates how this works for the
simple motion detector application represented in Figure 3.
The driver of the FromCamera element is configured to read
a new frame (one frame per second) from any camera in

Alice’s bedroom, and forwards that frame to the respective
element instance that belongs to the application. This event
is eventually forwarded to a driver responsible for the
cloud invocation operation. The HomePad hub architecture
is general, allowing for future extensions with new element /
drivers. Next, we describe several trusted element categories
that can be used as app building blocks.

B. Functionality of trusted elements

HomePad includes a library of trusted elements which
allows for highly flexible hub configurations. Trusted ele-
ments can be further incorporated into this library in order to
provide new functions to application developers. We present
several functions, grouped into broader categories:

Interaction with sensors and actuators: A crucial func-
tionality is to enable home apps to access sensors (e.g.,
thermostats, cameras, and microphones) or actuators (e.g.,
locks, or light bulbs). While some elements can implement
low-level functions such as simply reading / writing from
/ to a device, others can be more sophisticated and high-
level. For example, element FromCamera can read data from
multiple devices, know camera location(s), and can take
pictures at predefined frame rates.

Communication with remote endpoints: Trusted elements
can also enable communication with a remote party. The
ToCloud element, e.g., allows an application to issue HTTP
requests to a web service. Specific trusted elements can be
implemented to communicate with a mobile application. To
authenticate the mobile application’s endpoint, the trusted
element can be configured with a public key, whose private
part is maintained by the mobile application only.

System control and management: Some trusted elements
can be devised specifically to help control and manage
the system. For example, Switch (see Figure 4) provides
an interface for the administrator to enable or disable a
given function. This element implements a widget which
is integrated into the control dashboard in the HomePad
hub. Logger provides a logging functionality enabling the
application to maintain a record of operations. Additional
trusted elements can be used to control the system, e.g., the
AppManager element (see Figure 6).

Error handling and debugging: Specific trusted elements
can help handle application errors and debugging, e.g., for
sending bug reports to an application provider. To preserve
anonymity, there can be instances of such elements that, in
addition to packaging memory dumps or exception related
data, can first anonymize that data so as to prevent exfiltra-
tion of sensitive user information.

Storage of persistent data: As mentioned in Section V-A,
untrusted elements where application code is executed are
stateless. However, the application may need to keep state
persistently, either for sharing context information between



untrusted elements, exchanging data between multiple appli-
cations, etc. To this end, HomePad includes trusted elements
for persistent data storage. Such elements can be instantiated
with a given capacity. The following example shows the
output rule of a key-value store element:

out(el(kvstore), data(get, K), data(get, V)) :-
in(el(kvstore), data(put, pair(K, V))).

This rule states that the output value of a get request for
key K will return value V, which corresponds to the key-
value pair provided when issuing the request get(K,V). More
sophisticated storage elements can be devised, e.g., to keep
anonymized user data, implementing restricted data access
control through differential privacy, etc.

Data transformation: A class of trusted elements aims
at implementing data transformation functions. Examples
include audio / video codecs, compression algorithms, en-
cryption algorithms, etc. The face recognition element Fac-
eRec presented in Section IV-D is one concrete example. In
general, the output rule of such elements can be written as:

out(el(dtf), data(f (X))) :- in(el(dtf), data(X)).

This rule states that the output of a data transformation
element (dtf) is the result of applying function f to the input
data X. Naturally, the function to be applied is element-
specific. It is also possible to implement data sanitization
functions, e.g., by anonymizing user identifiers, filtering sen-
sitive data, replacing certain data with mockup information.

Time-based dataflow control: Finally, HomePad provides
a set of trusted elements that allow to enforce time con-
straints on the application’s data flow. For instance, with the
TimeSwitch element, users are able to specify time windows
when data flows are allowed or denied. As an example,
consider an IP camera which is allowed to record the video
when the user is not at home, and denied to do so otherwise.
Alternatively, a RateLimit element provides a way to specify
the maximum rate for data transmissions. Following the IP
camera example, the video stream might be restricted to one
frame per second, when an input of ‘1 sec’ is provided to
RateLimit element. This is important when using expensive
mobile network connections or battery-powered devices.
Overall, this type of elements allow for the enforcement
of various time-constraining rules by just modifying the
application graph accordingly.

C. Correctness of trusted elements

HomePad relies on multiple elements provided as part
of the platform. The behavior of these elements and the
operations they perform on sensor data are described by
their accompanying Prolog rules. However, there can be
a mismatch between the elements’ internal implementation

and their corresponding Prolog rules. Such a mismatch must
be avoided otherwise the correctness and safety of trusted
elements could be compromised. To overcome this problem
we propose an approach inspired by the Linux OS success.
We envision trusted elements’ software to be maintained and
scrutinized by an open-source developer community. Several
techniques can then be used in order to provide assurances
with regards to the correctness of trusted elements code,
such as software testing and verification tools.

VII. IMPLEMENTATION

We implemented HomePad to run on top of Debian 8
OS on a dedicated computer. We implemented home apps’
untrusted element sandboxes using Java Security Managers
to restrict access to network and underlying file system.
As for the System Drivers, e.g., Camera Driver, we used
custom Python scripts to interface low level communication
between devices and HomePad’s system drivers wrapping
Java classes. Sensor data is received by system drivers and
forwarded to element drivers, which then serve it to apps’
element instances through the event bus (see Figure 7). This
dataflow is event-based and is fully implemented in Java.

To simulate device communication, we used Arduino Yun
boards [15] and implemented simple device drivers in C++
and Python, to interact with the HomePad hub. These boards
communicate over Wi-Fi through AES-256 secure channels.
To support application scenarios with different sensors,
e.g., cameras, microphones, we established simple APIs to
facilitate the management of these boards via the HomePad
hub. For the same reason, the boards were equipped with a
Sony USB webcam [16] and electret microphones [17].

At install time the Model Checker analyzes the appli-
cation’s DSL code in order to validate the application’s
privacy properties. This validation involves the generation of
the application’s corresponding Prolog model followed by a
set of Prolog queries. The Model Checker component was
implemented as a Java class with SWI-Prolog version 6.6.6
engine stubs. To provide the user with a visual representation
of the applications’ structure and privacy properties, we
implemented an HTML report generator using the Graphviz
tool. This report shows the results of dataflow analysis from
the Prolog queries. In order for users to specify their own
privacy policies we developed a simple Android application
offering a simple API that allows users to pick data sources
and sinks, as well as exception rules such as time constraints
or data modes (e.g., encrypted, anonymized). The app then
sends the Prolog rules to Homepad through HTTPS.

VIII. EVALUATION

We present an evaluation of HomePad regarding per-
formance, application programming effort, and verification
effectiveness. We then evaluate HomePad’s privacy policy
specification mechanism and its ability to model and express
the variety of users’ privacy concerns.



Table II
USE CASE EXECUTION TIMES.

Execution
Lights Controller Spotify Controller Tide Pooler FaceDoor

Baseline HomePad Over Baseline HomePad Over Baseline HomePad Over Baseline HomePad Over

Recognition 2.2s (99%) 2.3s (98%) 5.8% 2.3s (99%) 2.4s (99%) 5.6% 2.4s (63%) 2.5s (61%) 4.1% 1.07 (89%) 1.11s (87%) 4.7%

Actuators 34ms (1%) 37ms (<2%) 7.7% 0.7ms (1%) 1.1ms (<1%) 63% 0.7ms (1%) 0.9ms (<1%) 32% 30ms (2%) 35ms (3%) 15%

Network – – – – – – 1.4s (36%)∗ 1.5s (38%)∗ 2.6% 117ms (9%) 119ms (9%) 1.8%

Core – 3.6ms (<1%) – – 3.5ms (<1%) – – 8.8ms (<1%) – – 5.7ms (<1%) –

Total 2.2s (100%) 2.3s (100%) 6% 2.3s (100%) 2.5s (100%) 5.7% 3.8s (100%) 4.1s (100%) 5.4% 1.2s (100%) 1.3s (100%) 4.7%

Legend: Baseline = execution outside HomePad; HomePad = execution inside HomePad; Over = HomePad execution overhead; ∗ = both Network times
account for 63.7ms and 63.9ms to parse the results of the tide request outside and inside HomePad respectively.

A. Use-case applications

To demonstrate the richness of applications supported by
HomePad, we developed four applications using technolo-
gies and devices available today in the smart home environ-
ment. Some applications rely on open-source software, i.e.,
Kaldi ASR [18] for voice recognition and OpenFace [19]
for face recognition.

1) Lights Control application - voice based lights control.
Implemented using Philips Hue API [20].

2) FaceDoor application - face recognition based door
control. Implemented by custom device drivers.

3) Tide Pooler application - voice based tide information
request service that performs text-to-speech conver-
sion when informing the user. This app was ported
from the Amazon Echo [21] skills collection.

4) Spotify Control application - voice based Spotify
player control. Implemented by custom device drivers
and leveraging Spotify’s API.

The privacy risks associated with these applications come
from the way they interact with the user. Voice and face
recognition requires access to the camera or microphone feed
which is a source of sensitive information constantly being
analyzed and may be used without the user’s knowledge.

B. Performance evaluation

To evaluate the performance of HomePad, we adapted the
four home automation applications described above to run
under two different configurations: on HomePad and as stan-
dalone Java applications. This setup allows us to compare the
performance overhead introduced by HomePad. To test the
execution of these apps and measure their performance, we
specified voice commands and pictures as inputs, according
to each use case. The values presented reflect the average
of 40 tests per application, with 20 running inside and the
other 20 running outside HomePad.

Figure 8 plots the execution time of our use-case ap-
plications when executed on HomePad (light grey) and
on standalone mode (dark grey). HomePad introduces an
overhead which varies between 4.7% and 6%. This overhead
is caused by the containerized sandboxes implemented by
HomePad. From our experience, considering that the total
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execution time varies between 2.2 and 4.1 seconds, these
overheads do not significantly hinder the user’s experience.

To better understand the factors that contribute to the
overall performance of each application, Table II displays
the total application execution time broken down into:
recognition, actuators, network, and core. Recognition time
is associated with the execution of voice or face recognition
and it measures the overhead of running these algorithms
following our privacy preserving containerized approach.
Actuators comprise the time spent on commands to turn on
lights, play the next track on Spotify, output tide information
as sound and unlocking a door. Network time involves
the communication with the outer world, whether to fetch
tide information, or notify a user someone just entered his
home. Core refers to the time spent on the event based
communication characteristic of HomePad’s architecture.

Most of the execution time of these apps is spent on
voice and face recognition (between 61% and 99%), which
constitute the most CPU-intensive tasks. On the other hand,
the time spent on actuators represents a very small per-
centage, never bigger than 3% or longer than 40ms. The
network communication accounts for 9% of FaceDoor’s total
execution time, as it only features an API call to an online
notification service so the user can know when someone
enters his home. In Tide Pooler, networking cost amounts
to 38% taking on average 1.5 seconds (due to the download



Table III
PRIVACY POLICY SPECIFICATION AND TRANSLATION.

Application Name Description Privacy Concern Privacy Policy

Amazon Echo Interactive voice assistant app that records and
responds to user commands prepended with
an ”Alexa” wake word.

Can the device record the conversations even
when the wake word was not said?

data source(Amazon Echo), transformation(wake
word detection), data sink(Amazon cloud).

Nest Cam Video surveillance and motion detection app
with cloud backup.

Is the camera active when the owner is at
home?

data source(Nest Cam), time restriction(8 PM - 8
AM), data sink (Nest Cloud)

Hello Barbie Interactive doll app that records and responds
to children’s questions.

What can a toy say to the child? data source(Hello Barbie App), transforma-
tion(word filter), data sink(Hello Barbie Doll).

and parsing of a large file containing tide information). Pro-
cessing and routing internal messages within the HomePad
core takes up only about 1% of the total execution time.
The overall performance is largely influenced by specific
app elements.

C. Application programming effort

To assess the programming effort needed to implement
a HomePad app we ported our most complex use case
application – Tide Pooler – for two additional platforms:
Amazon Skill [22] and Google Speech API [23]. Ama-
zon Skill leverages Amazon’s backend to perform voice
recognition and provides compatibility with Amazon’s Echo
device [21]. Google Speech API provides a voice recognition
service that our Tide Pooler port uses when running as a
Java desktop application. Keep in mind that our baseline
HomePad implementation of Tide Pooler uses HomePad’s
native voice recognition system module based on Kaldi [18].
All Tide Pooler versions were implemented in Java. We
assess the development effort in terms of the number of
lines of code (LOC).

From our experience, we found that the development
effort of implementing Tide Pooler across these platforms
is quite comparable, requiring 331 LOC for Amazon Skill,
332 LOC for Google API, and 370 LOC for HomePad. In all
cases, 35 LOC relate directly to the use case logic, 15 LOC
relate to getting tide information from a server, and 250 LOC
correspond to parsing the json file returned from the server.
The remaining lines of code are specific to the API of each
platform. In HomePad, specifically, 70 LOC are associated
with adaptation to HomePad’s module-element architecture.

D. Detection of privacy violations

To evaluate whether HomePad is able to detect policy
violations by a malicious application, we crafted two of our
use case apps, namely TidePooler and FaceDoor, by adding
malicious untrusted elements into their data flow graph.
These elements, named *Bad, aim to collect raw sensor data
from camera or microphone and send it directly to the cloud
without the user’s knowledge. To implement this in Tide-
Pooler, we added a new element TidePoolerBad to the flow
graph and connected it to FromMicrophone and CloudCall.
Similarly, for FaceDoor, we introduced FaceDoorBad and

added one upstream connection to FromCamera and one
downstream connection to CloudCall. To perform the test,
we also specified this privacy policy:

flows(img(frame),tocloud).
flows(mic(sample),tocloud).

This policy declares to be invalid any flow of raw audio or
video data going to the cloud. We then executed the checker
for each app. In both cases, HomePad has detected privacy
violation and correctly identified the malicious element.

E. Flexibility of privacy policies
HomePad allows for flexible privacy policies. To demon-

strate this flexibility, Table III presents three real-life use-
case scenarios [24], [4] that can benefit from HomePad’s
rich privacy policy features. The first example covers major
concerns regarding always-on voice assistants. Users worry
that devices like Amazon Echo can silently record and
analyze their conversations [25], [26], [27], [28], [29]. Such
concerns can be expressed in a HomePad privacy policy with
an exception rule requiring the wake word detection before
delivering the audio recording to remote service providers.

The second example illustrates a common concern regard-
ing Internet-connected home cameras. Users are essentially
worried that their cameras are active when they are not
supposed to thus violating user privacy [7], [30], [31], [32].
In this particular case, the user wishes for his bedroom’s
camera to be inactive from 8 PM to 8 AM. Within HomePad
this restriction can be validated using an exception rule that
specifies the time during which the restriction applies.

The last example regards common concerns over smart
interactive toys. Parents worry that such toys might leave
children vulnerable to stealthy advertising or offensive con-
tent [6], [33], [34]. In HomePad a swear words privacy
policy can be modelled with an exception rule that performs
word filtering on the data the application wishes to send to
a toy’s speaker. Note that this case shows that HomePad’s
privacy policy specification can not only handle outgoing
data flows but also incoming data flows that may violate
users’ privacy.

IX. DISCUSSION

In this section we provide a brief security analysis of
HomePad as well as its current limitations.



A. Security discussion

If we assume that the hub system and installed element
software is correct, an attacker (i.e., a malicious application
developer) may try to deploy malicious untrusted element
code undeclared in the application manifest in an attempt
to execute it on the hub. This attack, however, is prevented
by HomePad, which only allows the execution of elements
explicitly declared in the manifest.

An attacker may attempt to craft the flow graph in the
application manifest, e.g., adding concealed connections
between elements in order to bypass sensitive data to a
data sink, or adding a large number of connections and
elements in order to increase the complexity of the graph and
obfuscate the flow of data. Such attacks can also be thwarted
by HomePad, because it fashions a complete model of the
flow graph which captures all elements and connections
which can, therefore, be detected by the Prolog checker.

A malicious home app may try to exfiltrate information
through implicit flows, e.g., by omitting or issuing a call to
the ToCloud element (even if sensitive data is sent in the re-
quest). However, in HomePad’s flow graphs, all information
flows are made explicit, which means that by the time the
user validates the policy, he is informed that such flows are
possible and can decide consciously as to whether or not to
proceed with the installation of the application.

A limitation of HomePad is that the privacy verification
depends on the correctness of both the output rules of
elements and the rules of privacy policies. If errors exist
in rules, the flow graph will no longer reflect the app’s im-
plementation logic which may result in undetected breaches.
This problem is alleviated by the fact that the Prolog rules
of elements are very simple and relatively easy to analyze.

An additional limitation comes from the conservative ap-
proach used for data flow verification of untrusted elements.
By default, HomePad assumes the output of untrusted ele-
ments to be the same as their inputs. Such a strict approach
was selected in order to safeguard the user’s privacy, even
if it means to incur some false positives. Nevertheless, it is
possible to refine the verification granularity, for instance,
by using dynamic taint-tracking within untrusted elements
to verify the input/output data types.

B. Operational considerations

A potential concern is that it might be complicated to
manage HomePad hub for people with no computing back-
ground, especially to create the privacy policies. Moreover,
the privacy policies can also grow in complexity depending
on the number of installed apps. Creating and managing
complex policies may cause the users to experience decision
fatigue, a state in which a user gets overwhelmed by options
and acts recklessly. To maintain the privacy policies more
manageable, HomePad includes pre-defined rules that can be
used as is according to the profile of the user and the smart
home devices he or she owns. These built-in rules contain

best-practice privacy policies as recommended by industry
experts or other tech-savvy HomePad users.

Another concern is related to HomePad’s backward com-
patibility with existing smart home systems. However, we
argue that the market pressure for enhanced privacy and
data protection may well justify a departure from existing
IoT models in favor of alternative secure-by-design IoT
platforms, such as HomePad. Nevertheless, we plan to
investigate in the future whether it would be possible to
automatically (or semi-automatically) extract the dataflow
model from existing platforms applications, e.g. Samsung
SmartThings, so as to enable developers and smart home
owners to reuse existing applications on HomePad.

X. RELATED WORK

There is a large body of work addressing home au-
tomation and IoT-related issues, such as the privacy of
sensor-generated data. Centralized approaches have been
proposed to address user personal data storage access and
management [35], [36], [37]. However, these contributions
do not consider the issue of how apps use sensitive data once
in their possession. At the same time, Privacy Capsules [38]
processes raw sensor data only inside sealed containers
without network access. While Privacy Capsules limit access
to the network, we allow the user to decide if an app may
access data and network resources dynamically.

Some recent works address these privacy issues from
a network perspective. Davies et al. [13] propose the de-
ployment of cloudlets to run applications and manage their
access to raw sensor data. Yu et al. [12] suggested using
routers to secure IoT devices by running micro network-
security functions, acting as security gateways for each
device. However, in both cases it is assumed the apps and
functions are trusted respectively.

Fernandes et al. [39], [40] as well as Tian et al. [41]
identified and addressed the problems of over-privileged
apps in a popular smart home platform. However, all of
these systems focus mainly on security implications of over-
privileged apps and assume access to their source code. In
ProvThings [42], Wang et al. perform IoT platform log anal-
ysis to detect malicious device actions. They, however, as-
sume the smart home cloud platform execution environment
to be trusted, which is at odds to HomePad assumptions.

A decentralized trigger-action smart home platform DTAP
was proposed in [43]. While DTAP renders compromised
OAuth tokens useless, it does not allow to track and control
the flow of user data to legit token holders. In contrast,
HomePad allows to do so for any third party involved.

There are several systems that perform information flow
analysis through taint tracking [44], [45], [46], but also lever-
aging static code analysis [47], [48], [49]. These systems,
however, do not address the smart home environment and
its complex interaction model.



FlowFence [11] uses information flow control to manage
sensor data accesses from applications. One of FlowFence’s
limitations is the inflexibility of its taint labeling mechanism.
For instance, consider again the motion detector example
where Alice wishes to send blurred video data of her bed-
room to the cloud for motion detection. While Homepad’s
privacy policy specification and system trusted elements
allow for the raw video data to be processed before being
sent to the cloud, FlowFence’s mechanism overtaints this
data, preventing even for the blurred data to be sent. On
the other hand, FlowFence offers no way to automatically
verify the privacy properties of an application against users’
preferences, resorting instead to a pure runtime mechanism,
incurring in considerable performance overhead.

There’s also a considerable amount of work in the field
of formal verification [50], [51], [52], [53]. In particular,
Deshotels et al. [54] use Prolog to model the policies of
iOS container sandbox profiles and discover vulnerabilities
in them. Still, this solution does not directly address our
problem as that although it uses Prolog, it has a broader
focus on assessing security rather than privacy properties.

Various software verification techniques have been pro-
posed and used for quite some time [55], [56], [57], [58],
[59]. State-based model checking methods, for instance,
allow to verify the safety properties of a given software by
checking all the possible states it can reach. Although these
methods can provide high precision, their main shortcoming
is a so-called state-space explosion – an exponential growth
of system states which often makes a model checking
ineffective. In HomePad we leverage some model checking
ideas but operate with data operations instead of application
states in order to fully model any IoT app. This allows
to improve the verification performance dramatically and
overall makes the model checking approach more practical.
Furthermore, while classic model checking techniques are
more suitable for control-flow analysis, HomePad’s approach
allows to perform sophisticated data-flow analysis, which is
essential for user privacy guarantees.

XI. CONCLUSIONS

We presented HomePad a privacy-aware home hub that
allows users to supervise how the data generated by smart
devices is processed and used by home applications. In
HomePad, applications are required to be modularized, and
the data flows between those modules made explicit by
the developers. By laying out applications in this fashion,
HomePad can automatically leverage its Prolog-based data
flow verification mechanism in order to assess these applica-
tions’ compliance with users’ privacy policies. Additionally,
Homepad’s expressive privacy policy specification supports
a broad spectrum of privacy concerns users have. By com-
bining these two capabilities, Homepad provides runtime
data control to users.
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